Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Single replacement reactions. For example copper is more reactive than silver. So a copper wire in a silver solution will cause the silver to become a metal again.
The proton which is easily abstracted in
1-Benzyl-3-propylbenzene is the proton which is present on carbon atom in between two phenyl rings, or the central carbon which is shared by two benzene rings.
This easy abstraction of proton is due to its high acidity. Remember those species are always more acidic whose
conjugate base is stable. Like the acidity of carboxylic acid is due to stability of the
acetate ion.
In our case the stability of conjugate base arises due to
stability of negative ion due to resonance. As shown below, the negative charge can delocalize on both rings.
I have shown the resonance of negative ion on both Phenyl rings with
Blue and
Pink colors.<span />