Answer:
8.7 L
Explanation:
T2(V1/T1) = V2
417.15 K(6.2 L/296.45 K) = 8.7 L
Remember to almost always change celcius to kelvin. Also, this is part of Charle's Law (temp and volume are proportional, so if temp increaces so must the volume or vice versa). Lastly, Charle's Law has the formula of V1/T1 = V2/T2. I just rearranged it to go along with your problem. Hence, the T2(V1/T1) = V2
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Answer:
A. When two aqueous solutions are mixed, a precipitate is formed.
Explanation:
The precipitate (a solid substance that falls from the liquid) is the result of a chemical reaction taking place between the liquids.
The other three answer choices are indicative of physical changes (temperature change, phase change, color change).
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population
Answer:
1. 0.00040 calories
2. 8.57 calories
3. 0.196 calories
4. 68 calories
5. 243 calories
6. 83680 joules
7. 1,054,368 joules
8. 2.45 calories
9. 556 (it says calories to calories so it wouldn't change)
10. 28367.52 joules
11. 59.6 calories
12. 449.6 joules
13. 0.00234 calories
14. 23292.328 joules
15. 22877693.6 joules
Hope this helps!
Explanation: