Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas

where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:

and v = 3 L/5 moles = 0,6 L/mol

Answer:
Each principal energy level above the first contains one s orbital and three p orbitals. A set of three p orbitals, called the p sublevel, can hold a maximum of six electrons. Therefore, the second level can contain a maximum of eight electrons - that is, two in the s orbital and 6 in the three p orbitals.
Explanation:
C3H8+ 5 O2 --> 3 CO2 + 4 H2O
44 g. --------> 72 g
33.3 g. --------> x

Answer: The theoretical yield of H2O is 54.5
The correct response is A. Only the Fe is unbalanced.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156