The original question is to find the pH and the pOH of 0.023 M of perchloric acid.
Answer:
pH = 1.638
pOH = 12.362
Explanation:
1- getting the pH:
pH can be calculated using the following rule:
pH = -log[H+]
Since the given solution is an acid, this means that [H+] is the same as the concentration of the solution.
This means that:
[H+] = 0.023
Substitute in the above equation to get the pH as follows:
pH = -log[0.023]
pH = 1.638
2- getting the pOH:
We know that:
pH + pOH = 14
We have calculated that pH = 1.638.
Substitute in the above equation to get the pOH as follows:
pOH + 1.638 = 14
pOH = 14 - 1.638
pOH = 12.362
Hope this helps :)
It's A, t<span>The figure is a molecule and an element.</span>
Answer:
Here's what I find
Explanation:
Heisenberg observed that if we want to locate a moving electron, we must bounce photons off it.
However, this makes it recoil. By the time the photon returns to our eye, the electron will no longer be in the same place.
He concluded that there is a limit to the precision with which we can simultaneously measure the position and speed (momentum) of a particle.
The more precisely we know the electron's speed, the less precisely we know its position and vice versa.
The uncertainty in the product of the two values cannot be less than a fixed small number.
N(CH₃OH)=3,62·10²⁴/6·10²³ 1/mol = 6,033 mol
m(CH₃OH) = 6,033 mol · 32 g/mol (molar mass) = 193,06 g.
One: looks to be correct for both answers. Certainly the first one is. The second depends on your other choices. But military use is one.
Two: is correct. Pd has (in this case) an atomic mass of 114 and its number is 46
Three: Even with my slop numbers, 4.98 is the answer (although I get 4.99 but again, my numbers are pretty sloppy).
Four: Slop numbers say 78.3, but 78 is the right answer.
Five: Slop numbers agree with Al2S3. I think that's D
They are all correct. Very Fine Work.