1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
7

A 3-phase induction motor with 4 poles is connected to a voltage source with an amplitude of 209 Vrms and a frequency of 120 Hz.

The circuit has negligible line impedance and you can assume the simplified circuit model is valid. The motor has Rs = 2.3 LaTeX: \OmegaΩ, R'r = 0.7 LaTeX: \OmegaΩ, Xs = 1.3 LaTeX: \OmegaΩ, X'r = 1.8 LaTeX: \OmegaΩ , and Xm = 76 LaTeX: \OmegaΩ. In addition, the motor is spinning at a speed of 2,464 rpm. What is the output torque at the specified speed in Nm?
Engineering
1 answer:
Ket [755]3 years ago
4 0

Answer:

<em>T = 25.41 Nm</em>

Explanation:

Calculating Nsync (Synchronous Speed):

Nsync = 120f/P

Nsync = 120 x 120 / 4\\Nsync = 3600 rpm

Wsync = 3600 * 2\pi /180\\Wsync = 377 rad/s

Calculating s (Slip):

s = (Nsync - Nm) / Nsync \\[tex]s = (3600-2464)/3600\\s = 0.3156

Calculating Vth (Thevenin Voltage):

Vth = Vph (Xm / \sqrt{Rs^{2} + (Xs+Xm)^{2}  })\\Vth = 209 (76 / \sqrt{(2.3)^{2} + (1.3 + 76)^{2}  }\\Vth = 205.39 V

Calculating Rth (Thevenin Resistance):

Rth = Rs (Xm/Xs + Xm)^{2} \\Rth = 2.3 (76/1.3 + 76)^{2} \\Rth = 2.22 ohm

Calculating Xth (Thevenin Reactance):

Xth = Xs = 1.3 ohm

Calculating Torque:

T = (3Vth^{2}Rr/s) / (Wsync[(Rth+Rr/s)^{2} + (Xth + Xr)^{2}])\\T = (3*205.39*0.7/0.3156) / 377[(2.22+0.7/0.315)^{2} + (1.3+1.8)^{2}]

T = 280699 / 377 [19.69 + 9.61]

<em>T = 25.41 Nm</em>

You might be interested in
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
The end of a large tubular workpart is to be faced on a NC vertical boring mill. The part has an outside diameter of 38.0 in and
nata0808 [166]

Answer:

(a) the cutting time to complete the facing operation = 11.667mins

b) the cutting speeds and metal removal rates at the beginning= 12.89in³/min and end of the cut. = 8.143in³/min

Explanation:

check attached files below for answer.

5 0
3 years ago
4. The instant the ignition switch is turned to the start position,
geniusboy [140]

Answer:

D. Both pull-in and hold-in windings are energized.

Explanation:

The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.

The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.

4 0
2 years ago
A 1 m3 rigid tank initially contains air whose density is 1.18kg/m3. The tank is connected to a high pressure supply line throug
Elanso [62]

To solve this problem it is necessary to apply the concepts related to density in relation to mass and volume for each of the states presented.

Density can be defined as

\rho = \frac{m}{V}

Where

m = Mass

V = Volume

For state one we know that

\rho_1 = \frac{m_1}{V}

m_1 = \rho_1 V

m_1 = 1.18*1

m_1 = 1.18Kg

For state two we have to

\rho_2 = \frac{m_2}{V}

m_2 = \rho_2 V

m_1 = 7.2*1

m_1 = 7.2Kg

Therefore the total change of mass would be

\Delta m = m_2-m_1

\Delta m = 7.2-1.18

\Delta m = 6.02Kg

Therefore the mass of air that has entered to the tank is 6.02Kg

5 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
Other questions:
  • The head difference between the inlet and outlet of a 1km long pipe discharging 0.1 m^3/s of water is 0.53 m. If the diameter is
    11·1 answer
  • Write down one metal or alloy that is best suited for each of the following applications:
    8·1 answer
  • Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volum
    15·2 answers
  • Who is the best musician in Nigeria<br>​
    11·2 answers
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • A jet impinges directly on to a plate that is oriented normal to the axis of the jet. The mass flow rate of the jet is 50 kg/min
    8·1 answer
  • Which of the following best describes the basic purpose of the internet?
    7·2 answers
  • Jack has been concerned about the rapidly changing green regulations in his state and his ability as a mechanical engineer to ke
    13·1 answer
  • Write down the tracking error such that the adaptive cruise control objective is satisfied.
    15·1 answer
  • A machine has an efficiency of 15%. If the energy input is 300 joules, how much useful energy is generated?(1 point).
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!