The answer is true
Step by step explanation:
<h2>Answer</h2>
option D)
2.4 seconds
<h2>Explanation</h2>
Given in the question,
mass of car = 1200kg
speed of car = 19m/s
Force due to direction of travel
F = ma
= 12000(a)
Force to due frictional force in reverse direction
-F = mg(friction coefficient)
= -12000(9.81)(0.8)
<h2>
-mg(friction coefficient) = ma </h2>
(cancelling mass from both side of equation)
g(0.8) = a
(9.81)(0.8) = a
a = 7.848 m/s²
<h2>Use Newton Law of motion</h2><h3>vf - vo = a • t</h3>
where vf = final velocity
vo = initial velocity
a = acceleration
t = time
0 - 19 = 7.8(t)
t = 19/7.8
= 2.436 s
≈ 2.4s
Answer:
Electromagnetic waves consist of both electric and magnetic field waves. These waves oscillate in perpendicular planes with respect to each other, and are in phase. The creation of all electromagnetic waves begins with an oscillating charged particle, which creates oscillating electric and magnetic fields.
Explanation:
Explanation:
In the given question, the two metal spheres were hanged with the nylon thread.
When these two spheres were brought close together, they attracted each other. The attraction between these spheres is the result of the opposite charges between them.
The possible ways by which these two metal spheres can be charged are by induction that is touching the metal or by rubbing them.
During induction, the same charges are transferred to each sphere. In this case, either both the spheres will be negatively charged or positively charged.
It is not possible that after the sphere touch each other they will cling together because the same charge repels each other and during touching, if one sphere is neutral, then the charged one will transfer the same charge. And as we know that same charge repel each other therefore they will repel each other.
<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.