<span>Radio waves just like light waves can be reflected refracted and diffracted and polarized. The answer is True. </span>These characteristics are the common phenomena for electromagnetic (EM) waves, and Radio Waves are electromagnetic Waves so much so that they obey reflection, refraction, and diffraction.
Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
It does not violate the law of conservation of energy. The oscillation stops when the energy is lost and the energy is lost because it becomes heat that is created by the air resistance and many other forces found in the surrounding of the oscillating spring.
1) The total mechanical energy of the rock is:
where U is the gravitational potential energy and K the kinetic energy.
Initially, the kinetic energy is zero (because the rock starts from rest, so its speed is zero), and the total mechanical energy of the rock is just gravitational potential energy. This is equal to
where
is the mass,
is the gravitational acceleration and
is the height.
Putting the numbers in, we find the potential energy
2) Just before hitting the ground, the potential energy U is zero (because now h=0), and all the potential energy of the rock converted into kinetic energy, which is equal to:
where v is the speed of the rock just before hitting the ground. Since the mechanical energy of the rock must be conserved, then the kinetic energy K before hitting the ground must be equal to the initial potential energy U of the rock:
3) For the work-energy theorem, the work W done by the gravitational force on the rock is equal to the variation of kinetic energy of the rock, which is:
Explanation :
When an electron jumps from one energy level to another, the energy of atom gets changed.
If a photon gets absorbed, the electron will move to higher energy levels and then fall back to the lower energy levels. Then each time a photon will be absorbed whose energy is given by difference between the initial and final energy levels i.e
In Balmer series, the transition is from higher energy levels to n = 2.
So, the necessary condition for Balmer series is that the electron should be at first excited state or n = 2 level as shown in figure.