1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
3 years ago
13

Given three different locations on Earth's surface, where will the weight of a person be greatest? in New York City, which is ab

out 6369 km from the center of the Earth at the South Pole, which is about 6356 km from the center of the Earth on the Equator line, which is about 6378 km from the center of the Earth the weight is the same at all three locations
Physics
1 answer:
zhenek [66]3 years ago
3 0

Answer:

B. South Pole.

Explanation:

In order to answer this question, we simply have to refer to the laws of the equations of gravitational mechanics.

The equation given by Newton tells us that

F = \frac {Gm_1m_2} {r^2}

In the case where we compare a specific place where the Force of Gravity is greater or lesser, we focus on the term assigned to the Planet's Radius.

In the case of G, m_1, m_2, we understand that they are constant.

We can easily notice that the more the Radius (Height seen from a viewer on the ground), the lower the force will be.

<em>In other words, the smaller the radius in which the measurement is made with respect to the center of the earth, the greater the gravitational force.</em>

In that order of ideas the smallest radio has South Pole, which is about 6356 km from the center of the Earth on the Equator line

You might be interested in
Make a sketch of the radius of gyration of a polymer chain vs. the degree of polymerization N as it would appear on a log-log sc
zvonat [6]

Answer:

hhhhhhhhhhhhhhhhhhhhh

Explanation:

sjdnxjwodj1oeixjwkw9dijwqoisjd1

sjssusidej

4 0
3 years ago
Using a density of air to be 1.21kg/m3, the diameter of the bottom part of the filter as 0.15m (assume circular cross-section),
salantis [7]

Answer:

The  drag coefficient is  D_z  =  1.30512  

Explanation:

From the question we are told that

     The density of air is  \rho_a  = 1.21 \ kg/m^3

     The diameter of bottom part is  d = 0.15 \ m

The  power trend-line  equation is mathematically represented as

      F_{\alpha }  = 0.9226 * v^{0.5737}

let assume that the velocity is  20 m/s

Then

      F_{\alpha }  = 0.9226 * 20^{0.5737}

       F_{\alpha }  = 5.1453 \ N

The drag coefficient is mathematically represented as

      D_z  =  \frac{2 F_{\alpha } }{A \rho v^2 }

Where  

     F_{\alpha } is the drag force

      \rho is the density of the fluid

       v is the flow velocity

       A is the area which mathematically evaluated as

       A = \pi r^2 =  \pi  \frac{d^2}{4}

substituting values

     A =  3.142 *    \frac{(0.15)^2}{4}

     A = 0.0176 \  m^2

Then

   D_z  =  \frac{2 * 5.1453 }{0.0176 * 1.12 *  20^2 }

   D_z  =  1.30512  

3 0
3 years ago
The three forces shown act on a particle. what is the direction of the resultant of these three forces?
melisa1 [442]
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png

Solution:
We need to find the magnitude of the resultant on both x- and y-axis.

x-axis) The resultant on the x-axis is
F_x = 65 N\cdot cos 30^{\circ} - 30 N - 20 N\cdot sin 20^{\circ} = 19.45 N
in the positive direction.

y-axis) The resultant on the y-axis is
F_y = 65 N \cdot sin 30^{\circ} - 20 N \cdot cos 20^{\circ} = 13.70 N
in the positive direction.

Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using
\tan \alpha =  \frac{F_y}{F_x} = \frac{13.70 N}{19.45 N}=0.7
from which we find 
\alpha=35^{\circ}
7 0
3 years ago
A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
nalin [4]

Answer:

0·233 J

Explanation:

Given

Mass of the ball = 0·012 kg

Initially the ball is at a height of 2·5 m

As initially the ball is dropped, it's initial velocity will be equal to 0

Therefore initially it has zero kinetic energy and has only potential energy

∴ Initially total mechanical energy of the ball = potential energy of the ball

Initial potential energy of the ball = m × g × h

where

m is the mass of the ball

g is the acceleration due to gravity

h is the height of the ball

∴ Potential energy = 0·012 × 9·8 × 2·5 = 0·294 J

Velocity of the ball after striking the floor = 3·2 m/s

After striking the floor, the total mechanical energy = kinetic energy just after striking the floor

Kinetic energy = 0·5 × m × v²

where m is the mass of the ball

v is the velocity of the ball

∴ Kinetic energy of the ball = 0·5 × 0·012 × 3·2² = 0·061 J

Mechanical energy that is lost = 0·294 - 0·061 = 0·233 J

∴ Mechanical energy that the ball lost during its fall = 0·233 J

6 0
3 years ago
Compare and contrast scientific inquiry "skill and process".
Dmitrij [34]

Answer:

The inquiry process takes advantage of the natural human desire to make sense of the world... This attitude of curiosity permeates the inquiry process and is the fuel that allows it to continue. Process skills are not used for their own sake.

3 0
3 years ago
Other questions:
  • Based on the table, what would you predict the speed of sound through ice would most likely be?
    14·1 answer
  • A golfer starts with the club over her head and swings it to reach maximum speed as it contacts the ball. Halfway through her sw
    5·1 answer
  • Which of the following statements is true?
    6·2 answers
  • The property that compares the mass of an object with its volume is _____.
    9·2 answers
  • A car is travelling at a constant speed on a flat road
    9·1 answer
  • A 1.8 kg book had been dropped from the top of the football stadium. It's speed is 4.8 m/s when it is 2.9 meters above the groun
    8·1 answer
  • Can two people with a dominant phenotype have a child with the recessive phenotype
    9·2 answers
  • c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until fri
    10·1 answer
  • Which formula describes Boyle's law?
    5·1 answer
  • While on the moon, the Apollo astronauts enjoyed the effects of a gravity much smaller than that on Earth. If Neil Armstrong jum
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!