<h3>
Answer:</h3>
322.7 kW
<h3>
Explanation:</h3>
- Power refers to the rate at which work is done.
- Therefore; Power = Work done ÷ time
- It is measured in joules per seconds or Watts
In this case, we are required to convert 0.3227 MW to kilowatts
We need to know that;
- 10^6 watts = 1 Megawatts(MW)
- 10^3 Watts = 1 kilowatts (kW)
Therefore;
10^3 kW = 1 MW
Therefore, the suitable conversion factor is 10^3kW/MW
Hence;
0.3227 MW is equivalent to;
= 0.3227 MW × 10^3kW/MW
= 322.7 kW
Thus, the peak power output is 322.7 kW
Answer: 90.04°C
Explanation: <u>Calorimeter</u> is a device measures the amount of heat of a chemical or physical process. An ideal calorimeter is one that is well-insulated, i.e., prevent the transfer of heat between the calorimeter and its surroundings. So, the net heat change inside the calorimeter is zero:

Rearraging, it can be written as

showing that the heat gained by Substance 1 is equal to the energy lost by Substance 2.
In our case, water is gaining heat, because its temperature has risen and so, brass is losing energy:

Calculating:
![m_{w}.c_{w}.\Delta T=-[m_{b}.c_{b}.\Delta T]](https://tex.z-dn.net/?f=m_%7Bw%7D.c_%7Bw%7D.%5CDelta%20T%3D-%5Bm_%7Bb%7D.c_%7Bb%7D.%5CDelta%20T%5D)
![100.4.18.(18.4-15)=-[52.9.0.375.(18.4-T)]](https://tex.z-dn.net/?f=100.4.18.%2818.4-15%29%3D-%5B52.9.0.375.%2818.4-T%29%5D)
Note: final temperature is the same as the substances are in thermal equilibrium.
Solving:
418(3.4)= - 365.01 + 19.8375T
19.8375T = 1786.21
T = 90.04
The initial temperature for the sample of brass was 90.04°.
<span>Molar mass is the mass of
one mole of a substance, it can be a chemical element or a compound. It is a
characteristic of each pure substance. We calculate it by adding up all of the masses of the atoms involved in the compound. We calculate as follows:
atomic mass total mass
C 17 12.01 g/mol 204.17 g/mol
H 19 1.01 g/mol 19.19 g/mol
N 1 14.00 g/mol 14.00 g/mol
O 3 16.00 g/mol 48.00 g/mol
------------------------------------------------------------
Molar mass = 285.36 g/mol
</span><span>What is the mass of 6.02 x 10^24 molecules of morphine?
</span>6.02 x 10^24 molecules ( 1 mol / 6.02x10^23 molecules) ( 285.36 g/mol) = 2853.6 g morphine