1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
13

1. The number of protons in an atom, unique to each element, is known as the ___________.

Physics
1 answer:
Gnoma [55]3 years ago
4 0

Answer:

atomic number

Explanation:

the number of protons in an atom is called its "atomic number"

You might be interested in
if vector u has lenght 70 and direction 40 degrees, and vector v has length 85 and direction 335 degrees what is the length and
Anastaziya [24]

Answer:

Magnitude of resultant = 131.15

Direction of resultant = 3.97°

Explanation:

||u|| = 70

θ = 40°

\vec{u}_x=||u||cos\theta \\\Rightarrow \vec{u}_x=70cos40=53.62

\vec{u}_y=||u||sin\theta \\\Rightarrow \vec{u}_y=70sin40=44.99

||v|| = 85

θ = 335°

\vec{v}_x=||v||cos\theta \\\Rightarrow \vec{v}_x=85cos335=77.03

\vec{v}_y=||v||sin\theta \\\Rightarrow \vec{v}_y=85sin335=-35.92

Resultant

R=\sqrt{R_x^2+R_y^2}\\\Rightarrow R=\sqrt{(\vec{u}_x+\vec{v}_x)^2+(\vec{u}_y+\vec{v}_y)^2}\\\Rightarrow R =\sqrt{(70cos40+85cos335)^2+(70sin40+85sin335)^2}\\\Rightarrow R =131.15

\theta=tan^{-1}\frac{R_y}{R_x}\\\Rightarrow \theta=tan^{-1}\frac{70sin40+85sin335}{70cos40+85cos335}\\\Rightarrow \theta=tan^{-1}0.069=3.97^{\circ}

Magnitude of resultant = 131.15

Direction of resultant = 3.97°

4 0
3 years ago
A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
Minchanka [31]

Answer:

r = 0.11 m

Explanation:

The radius of the proton's resulting orbit can be calculated equaling the force centripetal (Fc) with the Lorentz force (F_{B}), as follows:

F_{c} = F_{B} \rightarrow \frac{m*v^{2}}{r} = qvB (1)

<u>Where:</u>

<em>m: is the proton's mass =  1.67*10⁻²⁷ kg</em>

<em>v: is the proton's velocity</em>

<em>r: is the radius of the proton's orbit</em>

<em>q: is the proton charge = 1.6*10⁻¹⁹ C</em>

<em>B: is the magnetic field = 0.040 T </em>

Solving equation (1) for r, we have:

r = \frac{mv}{qB}   (2)

By conservation of energy, we can find the velocity of the proton:

K = U \rightarrow \frac{1}{2}mv^{2} = q*\Delta V   (3)

<u>Where:</u>

<em>K: is kinetic energy</em>

<em>U: is electrostatic potential energy</em>

<em>ΔV: is the potential difference = 1.0 kV </em>

Solving equation (3) for v, we have:

v = \sqrt{\frac{2q\Dela V}{m}} = \sqrt{\frac{2*1.6 \cdot 10^{-19} C*1.0 \cdot 10^{3} V}{1.67 \cdot 10^{-27} kg}} = 4.38 \cdot 10^{5} m/s  

Now, by introducing v into equation (2), we can find the radius of the proton's resulting orbit:

r = \frac{mv}{qB} = \frac{1.67 \cdot 10^{-27} kg*4.38 \cdot 10^{5} m/s}{1.6 \cdot 10^{-19} C*0.040 T} = 0.11 m

Therefore, the radius of the proton's resulting orbit is 0.11 m.

I hope it helps you!  

5 0
3 years ago
The mass of a hot-air balloon and its cargo (not including the air inside) is 170 kg. The air outside is at 10.0°C and 101 kPa.
scoundrel [369]

Answer:

108.37°C

Explanation:

P₁ = Initial pressure = 101 kPa

V₁ = Initial volume = 530 m³

T₁ = Initial temperature = 10°C = 10+273.15 =283.15 K

P₂ = Final pressure = 101 kPa (because it is open to atmosphere)

V₂ = Final volume = 530 m³

P₁V₁ = n₁RT₁

⇒101×530 = n₁RT₁

⇒53530 J = n₁RT₁

P₂V₂ = n₂RT₂

⇒53530 J = n₂RT₂

\frac{m_1}{m_2}=\frac{\rho V_1}{\rho V_1-170}\\\Rightarrow \frac{m_1}{m_2}=\frac{1.244\times 530}{1.244\times 530-170}=1.347\\\Rightarrow \frac{m_1}{m_2}=1.347\\\Rightarrow \frac{n_1}{n_2}=1.347

Dividing the first two equations we get

1=\frac{n_1}{n_2}\frac{T_1}{T_2}\\\Rightarrow 1=1.347\frac{283.15}{T_2}\\\Rightarrow T_2=1.347\times 283.15= 381.52\ K

∴Temperature must the air in the balloon be warmed before the balloon will lift off is 381.25-273.15 = 108.37°C

8 0
3 years ago
What H and N can friction produce?
Oksi-84 [34.3K]
The answer is that FRICTION PRODUCES HEAT.
7 0
3 years ago
Read 2 more answers
What is required for both the light-dependent and light-independent reactions to proceed?
djyliett [7]
<span>ATP is required for both light-dependent and light-independent reactions.
ATP stands for </span> adenosine triphosphate.
 Hope this helps ;)

3 0
3 years ago
Other questions:
  • What's the opposite of futility​
    9·1 answer
  • Compared to the volume of earth the volume the sun is approxately?
    10·1 answer
  • If it were possible to remove gravity and friction, think about what would happen to a football if it were tossed into the air.
    7·2 answers
  • A student locates a double-slit assembly 1.40 m from a reflective screen. The slits are separated by 0.0572 mm. (a) Suppose the
    15·1 answer
  • If your friend said that to that kinetic energy was changing to potential emergy at point c, how would you respond
    5·1 answer
  • What are the scientific mesurments ordered from greatest to least
    12·1 answer
  • 2) How many significant figures are in the number 0.0037010?<br>​
    8·1 answer
  • What can i do to recycle?
    9·1 answer
  • Suppose a piano tuner stretches a steel piano wire 7.5 mm. The wire was originally 0.975 mm in diameter, 1.45 m long, and has a
    15·1 answer
  • A 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s 2. W
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!