Answer:
8
Explanation:
From the question given above, the following data were obtained:
t–butyl ion = (CH₃)₃C⁺
Number of valence electron =?
The valence electron(s) talks about the combining power of an element or compound as the case may be.
Considering the t–butyl ion, (CH₃)₃C⁺ we can see that it has a charge of +1 indicating that it has given out 1 electron to attain the stable octet configuration which has a valence electrons of 8. Thus, the valence electron of t–butyl ion, (CH₃)₃C⁺ is 8
The intermolecular force that attracts two nonpolar molecules is London dispersion forces, which are also called induced dipole-induced
Answer:
Part C: P2 = 0.30 atm
Part D: V1 = 16.22 L.
Explanation:
Part C:
Initial pressure (P1) = 2.67 atm
Initial volume (V1) = 5.54 mL
Final pressure (P2) =.?
Final volume (V2) = 49 mL
The final pressure (P2) can be obtained as follow:
P1V1 = P2V2
2.67 x 5.54 = P2 x 49
Divide both side by 49
P2 = (2.67 x 5.54)/49
P2 = 0.30 atm
Therefore, the final pressure (P2) is 0.30 atm
Part D:
Initial pressure (P1) = 348 Torr
Initial volume (V1) =?
Final pressure (P2) = 684 Torr
Final volume (V2) = 8.25 L
The initial volume (V1) can be obtained as follow:
P1V1 = P2V2
348 x V1 = 684 x 8.25
Divide both side by 348
V1 = (684 x 8.25)/348
V1 = 16.22 L
Therefore, the initial volume (V1) is 16.22 L
Answer:
weight hung from a fixed point so that it can swing freely backward and forward.