Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
H %= 100- (52.14 + 34. 73) equals 13.13 %
Assuming 100 g of this compound
Mass H= 13.13 g
Moles H= 13.13 g ÷ 1.008g/ moles= 13
Mass C= 52.14 g
Moles C= 52.14 g ÷ 12.011 g/ moles= 4
The empirical formula is C4H1302
I think you refer to Rutherford's Gold Foil Experiment alpha particles pass through because of the enormous amount of empty space inside the atom.
>>>more details here<<<
to have its trajectory affected the alpha particle has to pass "near" the nucleus to interact with the positive charge of the nucleus.
the fact is that internally the gold atoms are basically empty space and the nucleus represents only a small portion of the entire volume. only few alpha particles pass near the nucleus
picture added><><**><>< below}{<{>}
-gio-chealafi- hope this helps you, have a nice rest of the day. ily all!!
Answer:
The concentration of
is 1.48 ×
M
The absolute uncertainty of
is ±0.12 ×
M
The concentration of
is written as 1.48(±0.12) ×
M
Explanation:
The pH of a solution is given by the formula below
pH = ![-log_{10}[{H^{+}]](https://tex.z-dn.net/?f=-log_%7B10%7D%5B%7BH%5E%7B%2B%7D%5D)
∴ ![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
where
is the
concentration
From the question,
pH = 8.83±0.04
That is,
pH =8.83 and the uncertainty is ±0.04
First, we will determine
from
![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
![[{H^{+}] = 10^{-8.83}](https://tex.z-dn.net/?f=%5B%7BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-8.83%7D)
×
M
×
M
The concentration of
is 1.48 ×
M
The uncertainty of
(
) from the equation
is
×
× 
Where
is the uncertainty of
is the uncertainty of the pH
Hence,
= 2.303 × 1.4791 ×
× 0.04
= 1.36 ×
M
= 0.12 ×
M
Hence, the absolute uncertainty of
is ±0.12 ×
M
Calculate the normality of 1 Kg of aluminum sulfide in 5000 ml of solution.
Normality comes out to be 8.11
<h3>
Given </h3>
- Mass of solute: 1000g
- Volume of solution (V): 5000 ml = 5 liters
- Equivalent mass of solute (E) = molar mass / n-factor
n-factor for
is 6 and molar mass is 148g
So, on calculating equivalent mass is equal to 24.66g
FORMULAE of Normality (N) = (Mass of the solute) / (Equivalent mass of the solute (E) × Volume of the solution (V)
N=
<u> N=8.11</u>
Therefore, normality of 1 kg aluminum sulfide is 8.11
Learn more about normality here brainly.com/question/25507216
#SPJ10