1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
2 years ago
5

A Car is moving at a speed of 20 m/s. How Much Distance it will cover in 1 min? Express the answer in km.

Physics
1 answer:
natita [175]2 years ago
8 0

Answer:

d=20m/sx60s=1200m=1200/1000Km=1.2km

Explanation:

You might be interested in
A theory was not originally a hypothesis. true or false?
Serhud [2]
False.

Theories are hypotheses that have been shown to accurately and predictably explain results obtained through repeated experimentation, to the point where the hypothesis can be assumed to be true. Then, such a hypothesis would be considered a theory.
8 0
3 years ago
White light falls on a yellow filter,if:
riadik2000 [5.3K]

Answer:

all colours are absorbed except for the colour of the filter.

Explanation:

When white light passes through a coloured filter, all colours are absorbed except for the colour of the filter. For example, an orange filter transmits orange light but absorbs all the other colours. If white light is shone on an orange filter, only the orange wavelengths will be observed by the human eye.

6 0
3 years ago
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
A soccer player practices kicking the ball into the goal from halfway down the soccer field. The time it takes for the ball to g
12345 [234]

This is correct, I just did the test. Yes, displacement is 45 meters, elapsed time is three seconds, and the direction is toward the goal.

4 0
3 years ago
Read 2 more answers
What are the potential out comes of force
AysviL [449]

Answer:

F in the definition of potential energy is the force exerted by the force field, e.g., gravity, spring force, etc. The potential energy U is equal to the work you must do against that force to move an object from the U=0 reference point to the position r.

Explanation:

5 0
2 years ago
Other questions:
  • The conductive tissues of the upper leg can be modeled as a 40-cm-long, 12-cm-diameter cylinder of muscle and fat. The resistivi
    8·1 answer
  • which of these waves requires a medium to travel through light wave electromagnetic waves sound wave microwave
    14·2 answers
  • Which are properties of both a gas and a plasma? Check all that apply.
    14·2 answers
  • Graph are blank a relationship
    11·1 answer
  • The unit of kinetic energy is the _______. The unit of kinetic energy is the _______. hertz meter watt joule radian
    12·1 answer
  • A π meson of rest energy 139.6 MeV moving at a speed of 0.921c collides with and sticks to a proton of rest energy 938.3 MeV tha
    7·1 answer
  • Question 3 of 10
    5·1 answer
  • If a bus is running with a speed of 72 km/hr,calculate the distance travelled by it in 5 second.Which of the following is right
    7·1 answer
  • PLEASE HELP!!! GIVING BRAINLIEST!! ill also answer questions that you have posted if you answer these correctly!!!! (47pts)
    8·2 answers
  • A fin whale is swimming at the speed of 35 km/h how many hours will it take to swim 7 km
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!