Answer:
Isotopes have same atomic numbers, no. of protons and no. of electrons. Only their no. of neutrons and atomic mass are changed.
<u>Na - 24:</u>
Atomic Mass = 24
Atomic No. = 11
Hence,
No. of protons in Na-24 = 11
No. of neutrons = Atomic Mass - Atomic Number
No. of neutrons = 24 - 11
No. of neutrons = 13
Atomic Number = 11
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
1. The reaction for this would be:
Sn + 4 HNO₃ → SnO₂ + 4 NO₂ + 2 H₂O
The first observation would be bubbling of the solution and brown acrid smoke is produced due to the presence of NO₂ gas. Another observation would be the presence of a white solid which is SnO₂.
2. Heating was required to get rid of the H₂O. When all moisture is gone, you weigh the sample. Afterwhich, you further heat it to get ride of the oxygen. By doing this, you would know the individual mass of each element. Then, you can solve for the empirical formula of the oxide of tin.
Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:

Where:
Q: is the energy transferred = 5.0 MJ
: is the Boltzmann constant = 1.38x10⁻²³ J/K
: is the initial temperature = 1000 K
: is the final temperature = 500 K
Hence, the entropy change is:
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
Answer:
Mean rate of reaction produced = 0.533 g/sec (approx.)
Explanation:
Given:
Reaction produced = 1.6 gram
Time taken = 30 sec
Find:
Mean rate of reaction produced
Computation:
Mean rate of reaction produced = Reaction produced / Time taken
Mean rate of reaction produced = 1.6 / 30
Mean rate of reaction produced = 0.533 g/sec (approx.)