Answer:
The answer is True
Explanation:
Forensic toxicology involves or employs or uses disciplines such as analytical chemistry, pharmacology and clinical chemistry to aid medical or legal investigation.
The reasonable ground-state electron configuration is: 1s2 2s2 2p6 3s2 3p6 4s2 4d8
a thin solid glass rod that is used in chemistry to combine substances. A stirring rod often has rounded ends and is about the length of a long straw.
<h3>What use serves the stirring rod?</h3>
A crucial component of lab apparatus for mixing chemicals and liquids for reactions is a long, thin stirring rod. Stirring rods are made of solid plastic, glass, or steel and are non-abrasive, chemically inert, and chemically resistant.
<h3>What is the name of the glass stirring rod?</h3>
Glass rod, also known as a stirring rod, stir rod, or solid glass rod, is frequently made of quartz and borosilicate glass. Its diameter and length can be modified to meet your needs.
<h3>Does filtration employ stirring rods?</h3>
When the liquid transfer procedure is paused, use a stirring rod to direct the liquid flow into the funnel and stop small amounts of liquid from dribbling down the beaker's outside.
learn more about stirring rod here
<u>brainly.com/question/9971891</u>
#SPJ4
<span>Fe2O3 + 3CO --> 2Fe + 3CO2
</span><span>
m(Fe2O3)=213 g
m(CO)=140 g
</span>_______________
<span>n(Fe2O3)=?
m(Fe)=?
n(Fe2O3)=?
n(CO)=?
n(CO2)=?
</span>
<span>n(Fe2O3)=m(Fe2O3) / M(Fe2O3)
n(Fe2O3)= 213 g / 159,7 gmol-1 = 1,33 mol
</span>
<span>n(CO)= m(CO) / M(CO)
n(CO)= 140 g / 28,01 gmol-1 = 4,99 mol</span>
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.