You are given the mass of a sphere that is 26 kg sphere and it is released from rest when θ = 0°. You are also given the force of the spring that is F = 100 N. You are asked to find the tension of the spring. Imagine that the sphere is connected to a spring. The spring exerts a tension and the spring exerts gravitational pull. This will follow the second law of newton.
T - F = ma
T = ma + F
T = 26kg (9.81m/s²) + 100 N
T = 355.06 N
This is possible due to self-discharge. Very small internal currents inevitably occur in these cells over time and they will eventually exhaust the chemistry.
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
As per the question, the distance travelled by bobsled [s] = 100 m
The time taken by the bobsled to travel that distance [t] = 25 s
We are asked to calculate the speed of the bobsled.
The speed of the bobsled is calculated as -




Hence, the correct answer to the question is A. 4 m/s.
Answer:
Distance from start point is 72.5km
Explanation:
The attached Figure shows the plane trajectories from start point (0,0) to (x1,y1) (d1=40km), then going from (x1,y1) to (x2,y2) (d2=56km), then from (x2,y2) to (x3,y3) (d3=100). Taking into account the angles and triangles formed (shown in the Figure), it can be said:

Using the Pitagoras theorem, the distance from (x3,y3) to the start point can be calculated as:

Replacing the given values in the equations, the distance is calculated.