<u>Answer:</u> The temperature to which the gas in the syringe must be heated is 720.5 K
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:
where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
We are given:
Putting values in above equation, we get:
Hence, the temperature to which the gas in the syringe must be heated is 720.5 K
Answer:
All of these compounds are made from the element copper. Copper Acetates, Cuprous Oxide, Cupric Oxide (otherwise know as black copper oxide), Cupric Chloride, Copper Oxychloride, Cuprous Chloride, Cupric Nitrate, Copper Cyanide.
Explanation:
Copper is considered an element. You can use copper for Jewelry, Table Tops, Sinks, Dark Chocolate, Leafy Greens, Lobster, Nuts and Seeds, Mushrooms, Oysters, Liver and etc other nutrience. Copper is an easily molded base metal that is often added to precious metals to improve their elasticity, flexibility, hardness, colour, and resistance to corrosion.
Answer:
The percent by mass of copper in the mixture was 32%
Explanation:
The ammount of HNO₃ used is:
mol HNO₃ = volume * concentration
mol HNO₃ = 0.015 l * 15.8 mol/l
mol HNO₃ = 0.237 mol
According to the reaction, 4 mol HNO₃ will react with 1 mol Cu and produce 1 mol Cu²⁺. Since we have 0.237 mol HNO₃, the amount of Cu that could react would be (0.237 mol HNO₃ * 1 mol Cu / 4 mol HNO₃) 0.06 mol. This reaction would produce 0.060 mol Cu²⁺, however, only 0.010 mol Cu²⁺ were obtained, indicating that only 0.010 mol Cu were present in the mixture. This means that the acid was in excess, so we can assume that all copper present in the mixture has reacted.
Since 0.010 mol of Cu²⁺ were produced, the amount of Cu was 0.01 mol.
1 mol of Cu has a mass of 63.5 g, then 0.01 mol has a mass of:
0.01 mol Cu * 63.5 g / 1 mol = 0.635 g.
Since this amount was present in 2.00 g mixture, the amount of copper in 100 g of the mixture will be:
100 g(mixture) * 0.635 g Cu / 2 g(mixture) = 32 g
Then, the percent by mass of Cu (which is the mass of Cu in 100 g mixture) is 32%