Answer:
a) = 0.704%
b) = 1.30%
c) = 2.60%
Explanation:
Given that:
= 
For Part A; where Concentration of A = 0.270 M
Percentage Ionization(∝) 



percentage% (∝) = 
= 0.704%
For Part B; where Concentration of B =
M



percentage% (∝) = 0.0130 × 100%
= 1.30%
For Part C; where Concentration of C= 



percentage% (∝) = 0.02608 × 100%
= 2.60%
Answer:
T₂ = 392 K
Explanation:
Given that,
Initial volume of the hot air balloon, V₁ = 55500 m³
Initial temperature, T₁ = 21°C = 294 K
Final volume, V₂ = 74000 m³
We need to find the final temperature inside the balloon. The relation between the temperature and volume is given by charles law i.e.

Where
T₂ is the final temperature
So,

So, the new temperature is 392 K.
The answer is Independent Variable
Explanation:
the experiment conducted is the student adds sugar to a cup of iced tea and a cup of hot tea. She notices that the time needed for the sugar to dissolve in each cup is different. She thinks this has something to do with the temperature of the tea
hypothesis: If the student puts the sugar in both glasses of tea, then the sugar in the hot tea should dissolve quicker.