Atomic radii increase when going down a group and decreases when going towards the anion periods. So A and D.
Answer: The density of chloroform is 1.47 g/mL
Explanation : Given,
Volume = 40.5 mL
Mass of cylinder = 85.16 g
Mass of cylinder and liquid = 145.10 g
First we have to calculate the mass of liquid (chloroform).
Mass of liquid = Mass of cylinder and liquid - Mass of cylinder
Mass of liquid = 145.10 g - 85.6 g
Mass of liquid = 59.5 g
Now we have to calculate the density of liquid (chloroform).
Formula used:

Now putting g all the given values in this formula, we get:


Therefore, the density of chloroform is 1.47 g/mL
Answer : The molar mass of the solute will be
87.90 g/mol.Explanation : We know the formula for elevation in boiling point, which is
Δt = i

m
given that, Δt = 0.357,

= 5.02 and mass of

= 40,
on substituting the value we get,
0.357 = (1) X (5.02) X (x/ 0.044), on solving we get x = 2.844 X

.
Now, 0.250/ 2.844 X

=
87.90 g/mol. which is the weight of unknown component.
Answer:
HOPE IT HELPS...
Explanation:
When added to ice, salt first dissolves in the film of liquid water that is always present on the surface, thereby lowering its freezing point below the ices temperature. Ice in contact with salty water therefore melts, creating more liquid water, which dissolves more salt, thereby causing more ice to melt, and so on