1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
3 years ago
14

In which direction does the gravity of the earth act?

Physics
1 answer:
jolli1 [7]3 years ago
5 0

Answer:

Satellites don't fall from the sky because they are orbiting Earth. Even when satellites are thousands of miles away, Earth's gravity still tugs on them. Gravity--combined with the satellite's momentum from its launch into space--cause the satellite go into orbit above Earth, instead of falling back down to the groundv

Explanation:

You might be interested in
When a cyclist moves downhill without pedalling, what type of energy does he gain?
Vesna [10]

Answer:

He is gaining kinetic energy and losing potential energy

Explanation:

3 0
2 years ago
Read 2 more answers
Sug<br>. To repeat the experiment what is it?<br>​
statuscvo [17]

Answer:

....more foam

Explanation:

7 0
3 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
A solid Cute hug sides 0.50m
irina [24]

Answer:

gg

Explanation:

hh

3 0
3 years ago
1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
poizon [28]

Answer:

v = 10 m/s

Explanation:

Given that,

Distance covered by a sprinter, d = 100 m

Time taken by him to reach the finish line, t = 10 s

We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,

v = d/t

v=\dfrac{100\ m}{10\ s}\\\\v=10\ m/s

Hence, his average velocity is 10 m/s.

6 0
3 years ago
Other questions:
  • Express 9/15 as a percentage
    5·2 answers
  • Ou are given a 25.3 µf capacitor that is connected to a 13.0 v dc power supply. what will be the charge that is stored on this c
    9·1 answer
  • When an object is turning around, is it also at rest at the point?
    5·2 answers
  • This question kind of complicated for me
    14·2 answers
  • (96 Points )A bus and a bicycle have a head-on collision. Compare the force of impact between the bus and the bicycle; compare t
    12·1 answer
  • A 5.8 kg bowling ball is rolling down the lane with a velocity of 8.1 m/s . Calculate the momentum of the bowling ball. Provide
    11·1 answer
  • WILL GIVE BRAINLEIST!!! PLEAAE HLEPNME
    9·2 answers
  • A heat engine cycle is executed with steam in the saturation dome. The pressure of steam is 1.1 MPa during heat addition and 0.3
    14·1 answer
  • A car initially traveling at 15 m/s speeds up at a constant rate of 2.0 m/s2 for 3 seconds. The velocity of the car at the end o
    5·1 answer
  • Identify the word being referred to choose your answer from the words below​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!