Answer:
The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. ... The cue ball loses energy because the energy it had has been transferred to the 8 ball, so the cue ball slows down.
Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm
To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as

Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,

In Second Case,



The total energy change would be subject to,


Therefore the Kinetic Energy change of the charged object is 27.976J
Answer:
The force generated by a single muscle fiber can be increased by increasing the frequency of action potentials
Explanation:
The force generated by a muscle fiber is the result of the shortening of the skeletal muscle, and this force is also know as muscle tension. The larger motor units shorten along with the smaller units to produce the muscle force. The time lapsed between the beginning of the action potential in the muscle and the beginning of the contraction is the latent period. Action potential is the result of the difference electrical potential as a result of passage of an impulse along the membrane of a muscle or nerve cell.