1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
15

A ball is dropped from rest from the top of a building of height h. At the same instant, a second ball is projected vertically u

pward from ground level, such that it has zero speed when it reaches the top of the building.
(a) When do the two balls pass each other?
(b) Which ball has greater speed when they are passing?
(c) What is the height of the two balls when they are passing?
Physics
1 answer:
uranmaximum [27]3 years ago
7 0

Answer:

a) t = \sqrt{\frac{h}{2g}}

b) Ball 1 has a greater speed than ball 2 when they are passing.

c) The height is the same for both balls = 3h/4.

Explanation:

a) We can find the time when the two balls meet by equating the distances as follows:

y = y_{0_{1}} + v_{0_{1}}t - \frac{1}{2}gt^{2}  

Where:

y_{0_{1}}: is the initial height = h

v_{0_{1}}: is the initial speed of ball 1 = 0 (it is dropped from rest)

y = h - \frac{1}{2}gt^{2}     (1)

Now, for ball 2 we have:

y = y_{0_{2}} + v_{0_{2}}t - \frac{1}{2}gt^{2}    

Where:

y_{0_{2}}: is the initial height of ball 2 = 0

y = v_{0_{2}}t - \frac{1}{2}gt^{2}    (2)

By equating equation (1) and (2) we have:

h - \frac{1}{2}gt^{2} = v_{0_{2}}t - \frac{1}{2}gt^{2}

t=\frac{h}{v_{0_{2}}}

Where the initial velocity of the ball 2 is:

v_{f_{2}}^{2} = v_{0_{2}}^{2} - 2gh

Since v_{f_{2}}^{2} = 0 at the maximum height (h):

v_{0_{2}} = \sqrt{2gh}

Hence, the time when they pass each other is:

t = \frac{h}{\sqrt{2gh}} = \sqrt{\frac{h}{2g}}

b) When they are passing the speed of each one is:

For ball 1:

v_{f_{1}} = - gt = -g*\sqrt{\frac{h}{2g}} = - 0.71\sqrt{gh}

The minus sign is because ball 1 is going down.

For ball 2:

v_{f_{2}} = v_{0_{2}} - gt = \sqrt{2gh} - g*\sqrt{\frac{h}{2g}} = (\sqrt{1} - \frac{1}{\sqrt{2}})*\sqrt{gh} = 0.41\sqrt{gh}

Therefore, taking the magnitude of ball 1 we can see that it has a greater speed than ball 2 when they are passing.

c) The height of the ball is:

For ball 1:

y_{1} = h - \frac{1}{2}gt^{2} = h - \frac{1}{2}g(\sqrt{\frac{h}{2g}})^{2} = \frac{3}{4}h

For ball 2:

y_{2} = v_{0_{2}}t - \frac{1}{2}gt^{2} = \sqrt{2gh}*\sqrt{\frac{h}{2g}} - \frac{1}{2}g(\sqrt{\frac{h}{2g}})^{2} = \frac{3}{4}h

Then, when they are passing the height is the same for both = 3h/4.

I hope it helps you!                  

You might be interested in
UTMSUNG
likoan [24]

Answer:

i think answer id leech because when it move it leave the liner

4 0
2 years ago
Convection takes place because
solniwko [45]

Explanation:

the particles in liquids and gases move faster when they are heated than they do when they are cold. As a result, the particles take up more volume.

6 0
2 years ago
PLEASE SOLVE QUICKLY!!!<br> Solve for A, B, and C from graph
hram777 [196]

A = 59.35cm

B = 196.56g

C = 74.65g

<u>Explanation:</u>

We know,

x = \frac{L}{\frac{W}{F} +1}

and L = x+y

1.

Total length, L = 100cm

Weight of Beam, W = 71.8g

Center of mass, x = 49.2cm

Added weight, F = 240g

Position weight placed from fulcrum, y = ?

L-y = \frac{L}{\frac{W}{F}+1 } \\100 - y = \frac{100}{\frac{71.8}{49.2}+1 } \\100 - y = \frac{100}{1.46+1}\\\\100 - y = \frac{100}{2.46} \\100-y = 40.65\\\\y = 59.35cm

Therefore, position weight placed from fulcrum is 59.35cm

2.

Total length, L = 100cm

Center of mass, x = 47.8 cm

Added weight, F = 180g

Position weight placed from fulcrum, y = 12.4cm

Weight of Beam, W = ?

47.8 = \frac{100}{\frac{W}{180}+1 }\\\47.8  = \frac{100}{\frac{W+180}{180} } \\\\47.8 = \frac{100 X 180}{W+180}\\ \\47.8W + 47.8 X 180 = 18000\\47.8W  = 18000 - 8604\\W = \frac{9396}{47.8}\\ W = 196.56g

Therefore, weight of the beam is 196.56g

3.

Total length, L = 100cm

Center of mass, x = 50.8 cm

Position weight placed from fulcrum, y = 9.8cm

Weight of Beam, W = 72.3g

Added weight, F = ?

50.8 = \frac{100}{\frac{72.3}{F}+1 }\\\ 50.8  = \frac{100}{\frac{72.3+F}{F} } \\\\50.8 = \frac{100 X F}{72.3+F}\\ \\50.8 X 72.3 + 50.8 X F = 100F\\\\3672.84 = 100F-50.8F\\3672.84 = 49.2F\\F = 74.65g

Therefore, Added weight F is 74.65g

A = 59.35cm

B = 196.56g

C = 74.65g

4 0
2 years ago
What type of wave is shown below?
Elena-2011 [213]

Answer:

<u>B</u><u>.</u><u> </u><u>Transverse</u><u> </u><u>wave</u><u>.</u>

Explanation:

Because it has troughs and crests.

5 0
2 years ago
A single-phase 60-Hz overhead power line is symmetrically supported on a horizontal cross arm. Spacing between the centers of th
pentagon [3]

Complete question is;

A single-phase 60-Hz overhead power line is symmetrically supported on a horizontal cross arm. Spacing between the centers of the conductors acing between the centers of the conductors (say, a and b) is 2.5 m. A telephone line is also symmetrically supported on a horizontal cross arm 1.8 m directly below the power line. Spacing between the centers of these conductors (say, c and d) is 1.0 m.

The mutual inductance per unit length between circuit a-b and circuit c-d is given as 4 x 10^(-7) ln √((D_ad × D_bc)/(D_ac × D_bd)) H/m

where, for example, D_ad denotes the distance in meters between conductors a and d.

a. Hence, compute the mutual inductance per kilometer between the power line and the telephone line.

b. Find the 60-Hz voltage per kilometer induced in the telephone line when the power line carries 150 A

Answer:

A) M = 1.01 × 10^(-4) H/km

B) v_cd = 5.712 V/km

Explanation:

A) From the distances given in the question, we can deduce that;

D_ac = √(((2.5/2) - (1/2))² + 1.8²)

D_ac = 1.95 m

Also;

D_ad = √(((2.5/2) + (1/2))² + 1.8²)

D_ad = 2.51 m

I_a and I_b are put of phase by 180°. Thus, due to a and b, the flux linkages to c and d is given as;

φ_cd = 4 x 10^(-7)I_a( ln (2.51/1.95))

Mutual inductance per km is given as;

M = φ_cd/I_a

Thus;

M = 4 x 10^(-7)( ln (2.51/1.95))

M = 1.01 × 10^(-7) H/m

Per km;

M = 1.01 × 10^(-7) × 1000

M = 1.01 × 10^(-4) H/km

B) voltage per km is gotten by;

v_cd = ωMI

Now, ω = 2πf = 2π × 60 = 377 rad/s

Thus;

v_cd = 377 × 1.01 × 10^(-4) × 150

v_cd = 5.712 V/km

5 0
2 years ago
Other questions:
  • How can a cyclist's acceleration change even if its velocity remains constant?
    8·1 answer
  • Which of the following determined that cathode rays are negatively charged?
    11·1 answer
  • What is the difference between a do universal law and a scientific theory
    14·1 answer
  • Coherent light with wavelength 540 nm passes through narrow slits with a separation of 0.370 mm . At a distance from the slits w
    5·1 answer
  • An internal combustion engine has an efficiency of 22.3%. This engine is used to deliver 6.25x 40 J of work to drive the motion
    5·1 answer
  • In the equation for elastic potential energy below, what is represented by the symbol k? Ee = ½ × k × e²
    5·1 answer
  • The diagram below show the alignment of the sun moon and earth
    15·1 answer
  • Notación científica de 55,000m
    5·2 answers
  • Velocity and acceleration are both vectors; they have a
    14·1 answer
  • A nonconducting sphere of radius r0 carries a total charge q distributed uniformly throughout its volume
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!