Answer:
a. 1.91 b. -8.13 mm
Explanation:
Modulus =stress/strain; calculating stress =F/A, hence determine the strain
Poisson's ratio =(change in diameter/diameter)/strain
Answer:
the three part are mass, spring, damping
Explanation:
vibrating system consist of three elementary system namely
1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.
2) Spring - the part that has elasticity and help to hold mass
3) Damping - this part considered to have zero mass and zero elasticity.
Answer:
A degree in architecture with 60 credit hours.
Explanation:
The requirements need for a student to qualify for a two year master of architecture degree are;
- 60 credit hours in architecture
- Complete 60 credit hours in related area of profession such as; planning, landscape architecture ,public health and others.
- 45 credit hours in architecture course at the level of 500/600
Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation:
Answer:
(a) The stress on the steel wire is 19,000 Psi
(b) The strain on the steel wire is 0.00063
(c) The modulus of elasticity of the steel is 30,000,000 Psi
Explanation:
Given;
length of steel wire, L = 100 ft
cross-sectional area, A = 0.0144 in²
applied force, F = 270 lb
extension of the wire, e = 0.75 in
<u>Part (A)</u> The stress on the steel wire;
δ = F/A
= 270 / 0.0144
δ = 18750 lb/in² = 19,000 Psi
<u>Part (B)</u> The strain on the steel wire;
σ = e/ L
L = 100 ft = 1200 in
σ = 0.75 / 1200
σ = 0.00063
<u>Part (C)</u> The modulus of elasticity of the steel
E = δ/σ
= 19,000 / 0.00063
E = 30,000,000 Psi