Answer:
answer should be 10 because the line goes from (0,0) then to (1,10) and so on
Answer:
E = 75 J
Explanation:
First, we will calculate the total power consumed by the five lamps:

Now, the energy supply can be calculated as follows:

where,
E = Energy = ?
t = time = 5 s
Therefore,
E = (15 W)(5 s)
<u>E = 75 J</u>
Answer:
in first case the torque is maximum.
Explanation:
Torque is defined as the product of force and the perpendicular distance.
τ = F x d x Sinθ
In case A: the angle between force vector and the distance vector is 90 so torque is
τ = F x d
In case B: the angle between force vector and the distance is 30°.
τ = F x d x Sin30
τ = 0.5 Fd
So the torque is maximum in first case.
Answer:
The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²
The rocket's motion for analysis sake is divided into two phases.
Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m
Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.
Explanation:
The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.
The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.
The detailed step by step solution to the problems can be found in the attachment below.
Thank you and I hope this solution is helpful to you. Good luck.
Answer:
S= 1.40x10⁻⁵mol/L
Explanation:
The Henry's Law is given by the next expression:
(1)
<em>where S: is the solubility or concentration of Ar in water,
: is Henry's law constant and p: is the pressure of the Ar </em>
<u>Since the argon is 0.93%, we need to multiply the equation (1) by this percent:</u>
Therefore, the argon solubility in water is 1.40x10⁻⁵mol/L.
Have a nice day!