Answer:
When she stops at a fast pace the energy and wind will take the cup forward and it will most likeley brake
Explanation:
I'm not entirely sure this is what you were looking for but I hope this helped!
PLEASE MARK ME AS BRAINLIEST
Answer:
As the car travels up the coaster it is gaining potential energy.
Explanation:
Because It has the greatest in amount of potential energy at the top of the coaster. when the car travels down the roller coaster it obtains speed and kinetic energy.
Answer:
a
The number of fringe is z = 3 fringes
b
The ratio is 
Explanation:
a
From the question we are told that
The wavelength is 
The distance between the slit is 
The width of the slit is 
let z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is and this mathematically represented as

Substituting values
z = 3 fringes
b
From the question we are told that the order of the bright fringe is n = 3
Generally the intensity of a pattern is mathematically represented as
![I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%5B%5Cfrac%7B%5Cpi%20d%20sin%20%5Ctheta%7D%7B%5Clambda%7D%20%5D%5B%5Cfrac%7Bsin%20%28%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%20%7D%20%29%7D%7B%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%7D%20%7D%20%5D)
Where
is the intensity of the central fringe
And Generally 
![I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20co%5E2%20%5B%20%5Cfrac%7B%5Cpi%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%5D%20%5B%5Cfrac%7B%5Cfrac%7Bsin%20%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%7D%7B%5Cfrac%7B%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%28n%20%5Cpi%29%5B%5Cfrac%7B%5Cfrac%7Bsin%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%29%7D%7B%20%5Cfrac%7B%20%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%20%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%283%20%5Cpi%29%20%5B%5Cfrac%7Bsin%20%28%5Cfrac%7B3%20%5Cpi%20%7D%7B6%7D%20%29%7D%7B%5Cfrac%7B3%20%5Cpi%7D%7B6%7D%20%7D%20%5D)

