They move in a waves motion
b. describes it best because a form of molten cools down and makes igneous rock. Good luck! Please mark me brainliest!
Since there is no decimal point in the number given above, the counting for the number of the significant figures will start from the left. Then, the first zero from the left is insignificant. Therefore, in this number there are 6 significant figures.
Answer:
The linear velocity is 
Explanation:
According to the law of conservation of energy
The potential energy possessed by the hoop at the top of the inclined plane is converted to the kinetic energy at the foot of the inclined plane
The kinetic energy can be mathematically represented as

Where
is the moment of inertia possessed by the hoop which is mathematically represented as
Here R is the radius of the hoop
is the angular velocity which the hoop has at the bottom of the lower part of the inclined plane which is mathematically represented as

Where v linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface
Now expressing the above statement mathematically


=>
=> 
=> 
=> 
Substituting values


Answer:
a. The sheets move toward each other and the gap narrows.
Explanation:
This exercise is related to fluid mechanics, when blowing between the two sheets, we can apply Bernoulli's equation, where the index 2 is the space between the two sheets
P₁ + ½ ρ g v₁² + ρ g y₁ = P₂ + ½ ρ g v₂² + ρ g y²
if the two leaves are at the same height
y₁ = y₂
whereby
P₁ + ½ ρ g v₁² = P₂ + ½ ρ v₂²
for the air velocity between the leaves let us use the continuity equation
A₁ v₁ = A₂ v₂
the area between the leaves is less than the external area, so the air speed must increase. If we use this in Bernoulli's equation, increasing the speed 2 (between the leaves) to maintain equality the pressure must decrease.
If the pressure decreases, the blades should move closer
When resisting the answers, the correct one is a