1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saveliy_v [14]
3 years ago
11

N

Physics
1 answer:
yaroslaw [1]3 years ago
5 0
C is the answer duhhh
You might be interested in
Two things you can do to increase the acceleration of an object
stiv31 [10]
You can decrease the mass, or you can increase the force applied to the object
7 0
4 years ago
Two long, parallel transmission lines, 40.0cm apart, carry 25.0-A and 73.0-A currents.A). Find all locations where the net magne
In-s [12.5K]

Answer:

a) If the currents are in the same direction, the magnetic field is zero at x = 0.298 m = 29.8 cm

That is, in between the wires, 29.8 cm from the 73.0 A wire and 10.2 cm from the 25.0 A wire.

b) If the currents are in opposite directions, the magnetic field is zero at x = 0.608 m = 60.8 cm

That is, along the positive x-axis, 60.8 cm from the 73.0 A wire and 20.8 cm from the 25.0 A wire.

Explanation:

The origin is at the 73.0 A wire and the 25.0 A wire is at x = 0.40 m

The magnetic field in a current carrying wire at a distance r from the wire is given by

B = (μ₀I/2πr)

μ₀ = magnetic constant = (4π × 10⁻⁷) H/m

a) If the currents are in the same direction, at what positions is the magnetic field equal to 0.

According to laws describing the direction.of magnetic fields, this position will be at some point between the two wires.

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire points into the plane of the book, moving in the negative x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (0.4 - x)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(0.4-x)]

(73/x) = [25/(0.4-x)]

73(0.4-x) = 25x

29.2 - 73x = 25x

73x + 25x = 29.2

98x = 29.2

x = (29.2/98) = 0.298 m

b) If the currents are in the opposite directions, at what positions is the magnetic field equal to 0?

According to laws describing the direction.of magnetic fields, this position will be at some point beyond the second wire (since we're initially concerned about the positive x-direction).

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire (whose direction is now in the opposite direction to the current in the first wire) is also along the positive x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (x - 0.4)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(x-0.4)]

(73/x) = [25/(x-0.4)]

73(x-0.4) = 25x

73x - 29.2 = 25x

73x - 25x = 29.2

48x = 29.2

x = (29.2/48) = 0.608 m

Hope this Helps!!!

5 0
4 years ago
What is the volts for a cord that has a current of 18 and resistance of 2 ohms
Dvinal [7]

Answer:

9

Explanation:

i think not too sure but yea

5 0
2 years ago
What is the mechanical advantage of the machine shown below? a 5 b 4 c 3 d 2
Alex

Answer:

Explanation: Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device preserves the input power and simply trades off forces against movement to obtain a desired amplification in the output force.

4 0
3 years ago
QUESTION 10
Elena L [17]

The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

\theta =37.01^{\circ}

We can apply the first Newton's law in x and y-direction.

If we do a free body diagram of the system we will have:

x-direction

All the forces acting in this direction are:

T_{1}sin(\theta)-T_{2}sin(\theta)=0    (1)

Where:

  • T(1) is the tension due to the rope 1
  • T(2) is the tension due to the rope 2

Here we just conclude that T(1) = T(2)

y-direction

The forces in this direction are:

T_{1}cos(\theta)+T_{2}cos(\theta)-W=0   (2)

Here W is the weight of the steel beam.

We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.

Knowing that T(1) = T(2) and W = mg, we have:

T_{1}cos(\theta)+T_{1}cos(\theta)-m_{steel}g=0

2T_{1}cos(\theta)-m_{steel}g=0

2T_{1}cos(\theta)=m_{steel}g

T(1) must be equal to 5479 N, so we have:

cos(\theta)=\frac{m_{steel}g}{2T_{1}}

cos(\theta)=\frac{892*9.81}{2*5479}

cos(\theta)=\frac{892*9.81}{2*5479}

cos(\theta)=0.80

Therefore, the maximum angle allowed is θ = 37.01°.

You can learn more about tension here:

brainly.com/question/12797227

I hope it helps you!

8 0
3 years ago
Other questions:
  • An rv travels 45 km east and stays the night at a KOA. The next day it travels for 3 hours to the north l, traveling 110 km. Wha
    5·1 answer
  • Consider an electric dipole, composed of charges +q and -q separated by distance d, that is viewed from a large distance (large
    11·1 answer
  • The process by wich metamorphic rock changes to igneous rock begins with
    10·1 answer
  • In this excerpt from “an episode of war” by stephen crane, why does the doctor promise not to amputate the lieutenant’s arm?
    13·2 answers
  • A light wave has a 670 {\rm nm} wavelength in air. Its wavelength in a transparent solid is420 {\rm nm} .a)What is the speed of
    6·1 answer
  • Potential difference is measured in which units?<br> volts<br> amps<br> currents<br> watts
    9·2 answers
  • A 1.5m wire carries a 6 A current when a potential difference of 70 V is applied. What is the resistance of the wire?
    9·1 answer
  • Thanks for helping me
    6·2 answers
  • Please what are the laws of Isaac Newton for Motion​
    13·1 answer
  • Transfer payments are used to redistribute money to various segments of society. please select the best answer from the choices
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!