Answer:
the solubility of CaCO3 is 0.015g/l 25 °C
is favored at equilibrium
Explanation:
The Ksp of calcium carbonate in water at 25 °C is 2.25 x 10-8. CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq) What is favored at equilibrium?
solubility is the property of a solute to dissolve in a solvent(liquid, gas ) to form a solution(soution can be saturated ,unsaturated, or supersaturated)
CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq)
in partial dissociation , we can say
2.25x 10^-8=
let Ca^2+=CO3^-2=S
2.25x10^-8=S*S
S^2=2.25x10^-8
S=0.00015mol/L
Converting that to g/l
the relative molecular mass of CaCO3=100g/mol
0.00015*100g/mol
0.015g/l
the solubility of CaCO3 is 0.015g/l @room temperature
is favored at equilibrium
Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol.
It is translational motion. i know because i found it on this site. its verified too, have a nice day