Gate-control theory
<h3>What is Gate-control theory?</h3>
According to the Gate Control Theory of Pain, the spinal cord has a system that allows pain signals to be amplified in the brain before being processed at the spinal cord itself, or attenuated there.
The mechanism that allows or prevents the passage of pain signals is known as the gate. The gate may be open or it may be closed, one of two possibilities:
- When the gate is open, pain signals can enter and are delivered to the brain, where they are perceived as pain.
- If the gate is closed, pain signals will be prevented from ascending to the brain and won't be felt.
The administration of a non-noxious (soothing or light rubbing) stimulus can help engage the gate control mechanism and alleviate pain in those who are exposed to painful (noxious) stimuli.
Learn more about gate-control theory here:
brainly.com/question/15561467
#SPJ4
We can conclude that star A is closer to us than star B.
In fact, the absolute magnitude gives a measure of the brightness of the star, if all the stars are placed at the same distance from Earth. So, it's a measure of the absolute luminosity of the star, indipendently from its distance from us: since the two stars have same absolute magnitude, it means that if they were at same distance from Earth, they would appear with same luminosity. Instead, we see star A brighter than star B, and the only explanation is that star A is closer to Earth than star B (the closer the star A, the brigther it is)
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
Force=mass x acceleration
f= 0.5 x40
f=20N