Answer:
4/5
Explanation:
She is not wearing white t-shirt on the first day so she is wearing the other 4 t-shirt
Using an appropriate failure theory, find the factor of safety in each case. State the name of the theory that you are using the theory is max stress theory.
<h3>Wat is the max stress theory?</h3>
The most shear strain concept states that the failure or yielding of a ductile fabric will arise whilst the most shear strain of the fabric equals or exceeds the shear strain fee at yield factor withinside the uniaxial tensile test.”
Stress states at various critical locations are f= 2.662.
Read more about strain:
brainly.com/question/6390757
#SPJ1
Answer:
(a) Increases
(b) Increases
(c) Increases
(d) Increases
(e) Decreases
Explanation:
The tensile modulus of a semi-crystalline polymer depends on the given factors as:
(a) Molecular Weight:
It increases with the increase in the molecular weight of the polymer.
(b) Degree of crystallinity:
Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.
(c) Deformation by drawing:
The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.
(d) Annealing of an undeformed material:
This also results in an increase in the tensile strength of the material.
(e) Annealing of a drawn material:
A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.
Explanation:
Given T = 10 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (10 + 273.15) K = 283.15 K
<u>T = 283.15 K </u>
The conversion of T( °C) to T(F) is shown below:
T (°F) = (T (°C) × 9/5) + 32
So,
T (°F) = (10 × 9/5) + 32 = 50 °F
<u>T = 50 °F</u>
The conversion of T( °C) to T(R) is shown below:
T (R) = (T (°C) × 9/5) + 491.67
So,
T (R) = (10 × 9/5) + 491.67 = 509.67 R
<u>T = 509.67 R</u>