Answer:
y = 33.93 10⁵ m
Explanation:
This is an interference exercise, for the contributory interference is described by the expression
d sin θ = m λ
let's use trigonometry for the angle
tan θ = y / L
how the angles are small
tan θ = sin θ / cos tea = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
the light fulfills the relation of the waves
c = λ f
λ = c / f
λ = 3 10⁸ /375
λ = 8 10⁵ m
first order m = 1
let's calculate
y = 1 8 10⁵ 4030 10-9 / 950 10-9
y = 33.93 10⁵ m
Sound waves are known to be the one that's not considered as a type of electromagnetic energy. As for microwaves and x-rays, they tend to share the same frequencies that can be considered as electromagnetic, and sound waves have a different frequency than them.
Answer: there is zero kinetic energy but there is Gravitational Potential Energy (GPE) and GPE = 8826.3 J
Explanation:
By definition,
Momentum = Mass * Velocity
Let v = the velocity of the truck, m/s
The mass of the truck is 36,287 kg.
The momentum is 907,175 (kg-m)/s.
Therefore
907,175 (kg-m)/s = (36287 kg)*(v m/s)
v = 907175/36287 = 25 m/s
Answer: 25 m/s
Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s