Answer:You're answer is D: it is converted to kinetic energy
Explanation:
During a change of phase, the average kinetic energy of the molecules stays the same, but the average potential energy changes. ... My interpretation is that during a phase change, the temperature remains equal, but the kinetic energy of its particles increase/decrease.
LINK:
https://chemistry.stackexchange.com/questions/82163/clarification-of-kinetic-energy-during-phase-change
Answer : The
for this reaction is, -88780 J/mole.
Solution :
The balanced cell reaction will be,

Here, magnesium (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half oxidation-reduction reaction will be :
Oxidation : 
Reduction : 
Now we have to calculate the Gibbs free energy.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons to balance the reaction = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = 0.46 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the
for this reaction is, -88780 J/mole.
Answer:
the brain and the spinal cord are the two main parts.
You’ll need to be sure to count all the atoms in each side of the chemical equation.
Answer:
The approximate bond angle around the central carbon atom in acrolein is 120°.
Explanation:
The structure of acrolein is shown in the attachment. From the structure, we can deduce that the central carbon atom is in an sp2 hybridization (Atoms with a double bond hybridize in an sp2 fashion).
Atoms with sp2 hybridization have trigonal planar geometry, in this kind of hybridization, bonds are oriented the farthest away possible from each other, to minimize overlapping and the angle that allows that is 120°.