Atomic theory is the scientific inquiry of the nature of matter, which is subject to change as new information is discovered. The answer is A.
The solid water begins to change into liquid water when the ice molecules<span> start to move around. Another way to say that a substance changes from the solid state to the liquid state is to say it </span>melts<span>. Te </span>ice<span> continues to </span>melt<span> as more </span>ice molecules<span> get enough energy to move around.</span>
Based on the chemical equation, to balance the given equation we should use 2 as a coefficients of HCl on reacatnt side of the reaction.
<h3>What is balanced equation?</h3>
Balanced chemical equations are those equation in which each entities are present in same amount on reactant side as well as on the product side of the chemical reaction.
Given chemical reaction is:
Zn + HCl → ZnCl₂ + H₂
In the above reaction equation is not balanced as number of chlorine and hydrogen atoms are not equal on both sides, so balanced equation will be:
Zn + 2HCl → ZnCl₂ + H₂
Hence we add 2 as a coefficient of HCl to balance the equation.
To know more about balance equation, visit the below link:
brainly.com/question/15355912
Answer:
What can liquids do that solids cannot?Liquids will flow and fill up any shape of container. Solids like to hold their shape. In the same way that a large solid holds its shape, the atoms inside of a solid are not allowed to move around too much. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want.
What can gases do that solids cannot?The atoms and molecules in gases are much more spread out than in solids or liquids. They vibrate and move freely at high speeds. A gas will fill any container, but if the container is not sealed, the gas will escape. Gas can be compressed much more easily than a liquid or solid.
I hope this helps
Answer:

Explanation:
Hello!
In this case, since the energy involved during a heating process is shown below:

Whereas the specific heat of water is 4.184 J/(g°C), we can compute the heated mass of water by the addition of 11.9 kJ (11900 J) of heat as shown below:

Thus, by plugging in, we obtain:

Best regards!