Answer
Given,
Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.
refractive index of water, n_a = 1.33
refractive index of glass, n_g = 1.52
When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.
1) Focal length
We can find the focal length of the mirror by using the mirror equation:
(1)
where
f is the focal length
is the distance of the object from the mirror
is the distance of the image from the mirror
In this case,
, while
(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:
from which we find
2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
The process of separation or deposition of crystals from a hot saturated solution on gentle cooling of the solution is called 'crystallisation'.
Explanation:
Well,
When an object's velocity changes, we call it acceleration.
Acceleration: The time rate of change in an object's velocity