Whenever an object is falling, its potential energy
is decreasing and its kinetic energy is increasing.
Olivia's potential energy is decreasing and her kinetic energy
is increasing as she moves toward the right side of the picture,
all the way from W, through X, to the bottom of the arc.
When the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off, this is an example of resistance, which provides light and heat.
Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
When developing an experimental design, the action that would improve the quality of the results is to ensure that it answers a question about cause and effect.
<h3>What is experimental design?</h3>
Experimental design is a concept used to organize, conduct, and interpret results of experiments in an efficient way, making sure that as much useful information as possible is obtained by performing a small number of trials.
Thus, when developing an experimental design, the action that would improve the quality of the results is to ensure that it answers a question about cause and effect.
Learn more about experimental design here: brainly.com/question/17274244
#SPJ1
Answer:
V=4.7m/s
Explanations:
Let Ma mass of cat A=7kg
Va velocity of cat A=7m/s
Mb mass of cat b=6.1kg
VB velocity of cat b=2m/s
From conservation of linear momentum
MaVa+MbVb=(Ma+Mb)V
7*7+6.1*2=(7+6.1)V
61.2=13.1V
V=4.7m/s