1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
12

A volume of air increases 0.227 m^3 at a net pressure of 2.07 x 10^7 Pa. How much work is done on the air?

Physics
1 answer:
aliya0001 [1]3 years ago
7 0

Answer:

The work done on the air is 4.699 x 10⁶ Joules

Explanation:

Given;

increase in air volume, ΔV = 0.227 m³

net pressure of the air, P = 2.07 x 10⁷ Pa

The work done on the air is given by;

W = PΔV

Where;

W is the work done on the air

P is the net pressure

ΔV  is the increase in air volume

Substitute the given values and solve for work done;

W = (2.07 x 10⁷ Pa) (0.227 m³)

W = 4.699 x 10⁶ Joules

Therefore, the work done on the air is 4.699 x 10⁶ Joules

You might be interested in
Mary walked north from her home to Sheila's home, which is 4.0 kilometers away. Then she turned right and walked another 3.0 kil
bixtya [17]
The answer is speed: 4.7 km/h, velocity: 3.3 km/h.

Distances and time are given:
d1 =  4 km
d2 = 3 km
d3 = 5 km
t = 1.5 h

The speed can be expressed as a distance (d) divided by time (t). The average speed (s) is total distance travelled divided by time:
s = (d1 + d2)/t = (4+3)/1.5 = 7/1.5 = 4.7 km/h

The average velocity (v) is total displacement (d₁) from the starting point divided by time. Since Mary's starting point was home, and she walked to the supermarket, which is 5.0 kilometers from her own home, her displacement is 5 km:
v = d₁/t = 5/1.5 = 3.3 km/h

8 0
4 years ago
John runs around a 126.5 m circular track 3.5 times in 4.17 minutes. What is his average speed?
sdas [7]
Average speed = distance traveled / time

average speed  = (126.5 m * 3.5 laps) / (4.17 min)

= 106.2 m/min
6 0
3 years ago
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
3 years ago
What is capacitance?
Nataliya [291]

Answer:

A, the amount of charge stored per volt

Explanation:

Capacitance is defined below:

C = Q/V

Therefore capacitance is charge per volt which gets the unit farad.

7 0
3 years ago
A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What mu
Harrizon [31]

Answer:

t = 96.1 nm

Explanation:

For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength

now we know that the path difference of two reflected light from thin liquid layer is given as

2\mu t - \frac{\lambda}{2} = N\lambda

here we know that

\mu = 1.756

t = thickness of layer

N = 0 (for minimum thickness of layer)

\lambda = 675 nm

now we have

2(1.756) t = \frac{675 nm}{2}

t = 96.1 nm

5 0
3 years ago
Other questions:
  • Which of the following is the best thermal insulator?
    5·2 answers
  • Newton’s third law explains what happens when two objects ______.
    15·1 answer
  • A stone is thrown vertically upward with a speed of 18 m/s. (a) How long does it take the stone to reach a height of 11 m? (b) h
    10·1 answer
  • An upward force act on a proton as it moves with a speed of 2.0 x 10^5 meters/seconds through a magnetic field of 8.5 x 10^2
    7·1 answer
  • How Antman can breathe when his size is smaller then oxygen molecules?​
    10·1 answer
  • What is the lowest frequency that will resonate in an organ pipe 2.00 m in length, closed at one end? The speed of sound in air
    15·1 answer
  • A subwoofer needs a household voltage of 110 V to push a current of 5.5 A through its coil. What is the resistance of the subwoo
    7·1 answer
  • An athlete whirls a 8.00 kg hammer m from the axis of rotation in a horizontal circle, as shown in the figure below . The hammer
    8·1 answer
  • A student mixed two clear liquids together in a beaker. A solid and a new liquid formed. The student forgot to write down the ma
    8·1 answer
  • The metal case of the stove gets hot when the fire is lit. Here is some information about the stove
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!