Answer: I am pretty sure it is E
Explanation:
The answer to this question would be: 2 mol
To answer this question, you need to know the molecular weight of Potassium. Molecular weight determines how much the weight of 1 mol of a molecule has.
Potassium or Kalium molecular weight is 39.1 gram/mol. Then, 78.20gram of potassium should be: 78.20g/ (39.1g/mol)= 2 mol
We need to use the following formula
Δ


n= 4 moles
F= constant= 96500C/mol
let's plug in the values.
ΔG= -(4)(96500)(0.24)=
-92640 J or -92.6 kJ
94.6 g. You must use 94.6 g of 92.5 % H_2SO_4 to make 250 g of 35.0 % H_2SO_4.
We can use a version of the <em>dilution formula</em>
<em>m</em>_1<em>C</em>_1 = <em>m</em>_2<em>C</em>_2
where
<em>m</em> represents the mass and
<em>C</em> represents the percent concentrations
We can rearrange the formula to get
<em>m</em>_2= <em>m</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>m</em>_1 = 250 g; <em>C</em>_1 = 35.0 %
<em>m</em>_2 = ?; _____<em>C</em>_2 = 92.5 %
∴ <em>m</em>_2 = 250 g × (35.0 %/92.5 %) = 94.6 g
Answer: mutualism, commensalism, and parasitism
Explanation: with mutualism, both partners benefit. With commensalism, only one species benefits while the other is neither helped nor harmed. With parasitism, one organism (the parasite) gains benefits, while the other (host) suffers.