Answer:
Progress made in Asia and the Middle East is clear, with nations such as China, Singapore and Malaysia all demonstrating increased adaptability. Much of Africa has also made progress since 1995, along with South American nations, including Brazil and Chile.
Answer:
c. 9.94 g
Explanation:
From the question,
Using
mt = m₀e⁻kt.................... Equation 1
Where mt = mass of the leaf remaining in the bag, m₀ = original mass of leave that was placed in the bag, k = decay constant, t = time.
Given: m₀ = 33 g, k = 0.04, t = 30 days.
Substitute into equation 1
mt = 33(e⁻(0.04ˣ30))
mt = 33e⁻¹²/¹⁰
mt = 33/e¹²/¹⁰
mt = 33/3.320
mt = 9.94 g.
Hence the right answer is c. 9.94 g
The pressure is directly proportional to temperature (when the pressure decrease the temperature decrease too). Because the air parcel expands so the molecules will not interact with each other as much.
The energy of the particles does not change but the fact that the particles are more spaced out means the parcel is cooler.
so now, the warmer a parcel of air the more water vapor it can hold. so, if a parcel of air cools it's ability to hold water vapor drops and if it drops to a low enough point that is when the water vapor will condense and turn back into liquid water. This is how clouds and precipitation form on the the windward side of the mountain.
Answer:
96.09 g/mol
Explanation:
You just need to first get the atomic weights of the elements involved. You can easily get these from your periodic table.
If you are going to do this properly, please use the weight with at least two decimal places for accuracy (e.g. 15.99 g/mol).
Also, please take note that I will be using the unit g/mol for all the weights. Thus,
Step 1
N = 14.01 g/mol
H = 1.008 g/mol
O = 16.00 g/mol
C = 12.01 g/mol
Since your compound is
(
N
H
4
)
2
C
O
3
, you need to multiply the atomic weights by their subscripts. Therefore,
Step 2
N = 14.01 g/mol × 2 =
28.02 g/mol
H = 1.008 g/mol × (4×2) =
8.064 g/mol
O = 16.00 g/mol × 3 =
48.00 g/mol
C = 12.01 g/mol × 1 =
12.00 g/mol
To get the mass of the substance, we need to add all the weights from Step 2.
Step 3
molar mass of
(
NH
4
)
2
CO
3
=
(28.02 + 8.064 + 48.00 + 12.01) g/mol
=
96.09 g/mol
this is a google search and a example i hope is helps to solve
Atoms have an overall charge of zero because the charge of the electron is canceled by a proton and a neutron has a net charge of 0.If you were to take out an electron,you will create an ion(ion is an atom with a charge).This ion will have a charge because it now has different amount of electrons and protons.
Source:<span>webcast.berkeley.edu
</span>