1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
3 years ago
12

Laws that implemented the consumers' right to be informed forbid __________.

Physics
2 answers:
Reptile [31]3 years ago
4 0

Laws that implemented the consumers' right to be informed forbid misleading advertising.

Answer is C.

lina2011 [118]3 years ago
3 0

Laws that implemented the consumers' right to be informed forbid misleading advertising.

Answer: Option C

<u>Explanation:</u>

The laws that are implemented to protect consumer’s rights include the things discussed below.  

The advertisements about any product should be informative. It should provide valid advertisements about that product. It prohibits the act of advertising falsified information about the product.  

Business sellers usually advertise their product with false information to cheat the customers and make them buy their product just to attain profit. They usually aim to sell the product without any advertised usage. So, this kind of act is highly prohibited by the laws of Consumer’s rights.

You might be interested in
A particular field is 111 yards long. Express this length in meters.
romanna [79]

Answer:

101.498 m

Explanation:

8 0
3 years ago
Read 2 more answers
Equation for inclined spring
zalisa [80]

Answer:

dbdbdheh eewr h eahehwGFTT5Q3JFX

Explanation:

FJGXJDGTFJSRRXAGFEWFWDdQDE

'

6 0
3 years ago
The specific heat of substance A is greater than that of substance B. Both A and B are at the same initial temperature when equa
Sonja [21]

Answer:

m_A c_{pA} (T_{fA} -T) = m_B c_{pB} (T_{fB}- T)

For this case, if we try to find the final temperature of A and B, we see that we will obtain an expression in terms of specific heats and masses, from the information given we know the relationship between specific heats, but we don't know the relationship that exists among the masses, then the best option for this case is:

d) More information is needed

(The relation between the masses is not given)

Explanation:

For this case we know the following info:

c_{pA} > c_{pB}

Where c means specific heat for the substance A and B.

We also know that the initial temperatures for both sustances are equal:

T_{iA}= T_{iB}

We assume that we don't have melting or vaporization in the 2 substances. So we just have presence of sensible heat given by this formula:

Q = m c_p \Delta T

And for this case we know that Both A and B are at the same initial temperature when equal amounts of energy are added to them, so then we have this:

Q_A = Q_B

And if we replace the formula for sensible heat we got:

m_A c_{pA} \Delta T_A = m_B c_{pB} \Delta T_B

And if we replace for the change of the temperature we got:

m_A c_{pA} (T_{fA} -T_{iA}) = m_B c_{pB} (T_{fB}- T_{iB})

And since T_{iA}= T_{iB}= T we have this:

m_A c_{pA} (T_{fA} -T) = m_B c_{pB} (T_{fB}- T)

For this case, if we try to find the final temperature of A and B, we see that we will obtain an expression in terms of specific heats and masses, from the information given we know the relationship between specific heats, but we don't know the relationship that exists among the masses, then the best option for this case is:

d) More information is needed

(The relation between the masses is not given)

4 0
3 years ago
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
3 years ago
Nancys airplane trip took 4 hour. For one-fourth of that time, the airplane flew at a speed of 880 km/h, it flew at a speed of 6
9966 [12]
So for a minute lets ignore the 880 km/h. If it took 4 hours and she flew at 600 km/h 600*4=2400. Now lets Look at the 880 bit. If it took 4 hours and she where to fly at 880 it would've been 880*4=3520. Lets do 2400-600=1800, now we've got the 600 kmh bit done. Now lets see if you fly 880 km/h for one hour then you add 1800+880=2680. 

Remember to thank and rate people who help you!
4 0
3 years ago
Other questions:
  • For a spring oscillating in simple harmonic motion, at what point will the velocity of
    9·1 answer
  • What is the most common source of energy for surface waves
    10·1 answer
  • A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
    6·1 answer
  • 1. How is nuclear notation for an electron different than we symbolize electrons in the rest of chemistry? Do your best, don’t s
    13·1 answer
  • The land area that supplies water to a river system is called
    8·2 answers
  • A skier is traveling down a slope that is inclined 30° above the horizontal. The coefficient of kinetic friction between the ski
    12·1 answer
  • A particular gun (10kg) is able to fire 20 gram bullets at a speed of 350 m/s. From this information, calculate roughly how much
    15·1 answer
  • It a car travels 2km in 1 hour what is the speed
    9·1 answer
  • Please answer the following question.
    14·1 answer
  • Metals are used in many products because of the characteristic properties that most metals have.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!