Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
The balanced chemical
reaction will be:
2H2O = 2H2 + O2
<span>We are given the amount of water used in the decomposition reaction. This will be our
starting point.</span>
<span>17.0 g H2O</span> (1 mol H2O/ 18.02 g H2O) (1 mol O2/2
mol <span>H2O</span>) ( 32.00 g O2/1mol O2) = 15.09 g O2
Percent yield = actual yield / theoretical yield x 100
<span>Percent yield =10.2 g / 15.09 g
x 100</span>
Percent yield = 67.58%
Answer:
The periodic table has gone through many changes since Dmitri Mendeleev drew up its original design in 1869, yet both the first table and the modern periodic table are important for the same reason: The periodic table organizes elements according to similar properties so you can tell the characteristics of an element just by looking at its location on the table
Explanation:
hope it helps you
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ