Nuclear decay formula is N(t)=N₀*2^-(t/T), where N(t) is the amount of nuclear material in some moment t, N₀ is the original amount of nuclear material, t is time and T is the half life of the material, in this case carbon 14. In our case N(t)=12.5% of N₀ or N(t)=0.125*N₀, T=5730 years and we need to solve for t:
0.125*N₀=N₀*2^-(t/T), N₀ cancels out and we get:
0.125=2^-(t/T),
ln(0.125)=ln(2^-(t/T))
ln(0.125)=-(t/T)*ln(2), we divide by ln(2),
ln(0.125)/ln(2)=-t/T, multiply by T,
{ln(0.125)/ln(2)}*T=-t, divide by (-1) and plug in T=5730 years,
{ln(0.125)/[-ln(2)]}*5730=t
t=3*5730=17190 years.
The bone is t= 17190 years old.
Answer:
18.33 Ns
Explanation:
As the pitch back speed has the opposite direction as before, the change in velocity would be

So the change in momentum of the ball would be the product of its velocity change and its mass

This is equals to the impulse acted on the ball by the bat, which is 18.33 Ns
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
Let the first car's average speed be x
The second car's speed would be x+5




So the speed of the slower car is 50mph, and the speed of the faster car is 55mph
Answer:
B. It is too slow to observe directly
Explanation:
They move too slow to be able to observe how they move.
I hope it helps! Have a great day!
bren~