Answer:
Explanation:
2Al(s) + 3 2 O2(g) → Al2O3(s) And given the stoichiometry ...and EXCESS dioxygen gas...we would get 6.25⋅ mol of alumina. the which represents a mass... ...6.25 ⋅ mol ×101.96 ⋅ g ⋅ mol−1 molar mass of alumina ≡ 637.25 ⋅ g.
Answer:
The molar mass of the vapor is 43.83 g/mol
Explanation:
Given volume of gas = V = 247.3 mL = 0.2473 L
Temperature = T = 100
= 373 K
Pressure of the gas = P = 745 mmHg (1 atm = 760 mmHg)

Mass of vapor = 0.347 g
Assuming molar mass of gas to be M g/mol
The ideal gas equation is shown below

The molar mass of the vapor comes out to be 43.834 g/mol
I'm pretty sure its the weight of the book
The answer: A
Explanation: fossil fuels need to be burned to release the energy stored in them, Which leads to smoke casting cans gas being pumped into the air. Unfortunately, burning fossil fuels Releases harmful particles and greenhouse gases into the atmosphere, resulting in adverse affects humans and earth as a whole.