When the object is at the focal point the angular magnification is 2.94.
Angular magnification:
The ratio of the angle subtended at the eye by the image formed by an optical instrument to that subtended at the eye by the object when not viewed through the instrument.
Here we have to find the angular magnification when the object is at the focal point.
Focal length = 6.00 cm
Formula to calculate angular magnification:
Angular magnification = 25/f
= 25/ 8.5
= 2.94
Therefore the angular magnification of this thin lens is 2.94
To know more about angular magnification refer:: brainly.com/question/28325488
#SPJ4
4. 1 and 2 only.
1. the downward force is the force of gravity.
<span>2. The upward force exerted is the Normal reaction from the floor.</span>
The force equation can easily prove this. F=ma. This states that the force on an object is equal to mass times acceleration. If the mass stays the same and the velocity of the cars increases than that means there is a larger force. This is because in both cases the cars are stopping in almost an instant and the times of the crashes are theoretically identical. Acceleration is the change in velocity over time. If the velocity is higher with the same amount of time than that means there is a higher acceleration. If you plug a higher acceleration into the force equation then you wind up with a higher force and in turn a more damaging collision.
<span />
Answer:
we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Explanation:
given data
base = 3.60 m
speed u = 8 m/s
height = 1.70 m
to find out
check change in speed
solution
we know here formula for v that is
v² = u² - 2gh ............1 for upward speed
v² = u² + 2gh ............2 for projected speed
so here put all value and find v with h = 3.60 - 1.70 = 1.9 m
v² = 8² - 2(9.8) 1.9 = 26.76
v² = 8² + 2(9.8) 1.9 = 101.24
v = 5.173 m/s ..............3
v = 10.061 m/s ...................4
so change in speed form 3 and 4 equation
change in speed = v - u = 8 - 5.173 = 2.827 m/s .................5
change in speed = v - u = 10.061 - 8 = 2.061 m/s ..................6
so now we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
I don’t think I will have any time to go