Answer:
False
Explanation:
Changing the coefficients is one of the steps of balancing a chemical equation. Changing the subscript changes the compounds being used, while changing the coefficient changes the amount of each compound being used.
Answer : The correct option is (3) 500 K and 0.1 atm.
Explanation :
A real gas behaves ideally at high temperature and low pressure.
The ideal gas equation is,

where,
P = pressure of gas
V = Volume of gas
R = Gas constant
T = temperature of gas
n = number of moles of gas
The ideal gas works properly when the inter-molecular interactions between the gas molecules and volume of gas molecule will be negligible. This is possible when pressure is low and temperature is high.
Therefore, the correct option is (3) 500 K and 0.1 atm.
Answer:
Calcium reacts with Oxygen to form Calcium Oxide
Explanation:
Reactant: Calcium reacts with Oxygen to form Calcium Oxide
Products: Calcium + Oxygen
Chemical equation: Ca + 02> CaO
Answer:

Explanation:
The first step is:

Second step is:

Multiplying second step by 2, and adding both the steps, we get that:

Cancelling common species, we get that:

Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm