A small rock quickly rolling down a hill because as the velocity or speed increases the particles in the rock start to increase kinetic energy. The particles start to act up and create more energy. Also because the small rock would go faster than a giant rock because of Newton's second law. Can I have brainliest pls?
Answer:
a,b,d and e are correct.
Explanation:
a) Change of temperature without change of velocity is a conclusive evidence of an interaction. As the temperature of a body will only change if heat energy is flows in or out of the body with surrounding. So, option a) is correct.
b) Change of the direction without change of speed is an evidence of an interaction. The direction changes when the object is under a perpendicular acceleration acceleration which clearly means the particle is interacting or external force applied. So, option b is correct.
d) Change of shape or configuration without change of velocity is conclusive evidence of an interaction. The shape can change only if external stress is applied on the particle. So, Option d is correct.
e) Change of identity without change of velocity is a conclusive evidence of an interaction. The identity of an object can only change if it interacts with surroundings. So, option e is correct
Therefore the only incorrect option is c .
It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.
Answer:
(A) –14m/s
(B) –42.0m
Explanation:
The complete solution can be found in the attachment below.
This involves the knowledge of motion under the action of gravity.
Check below for the full solution to the problem.
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K