Answer:
Thrust acts on the accelerated object in the direction opposite to the applied force hence it accelerates the object in the direction opposite to the applied force. ... Its magnitude is equal to that of applied force. It always increases the velocity of the object.
Explanation:
The simplest way to do this is to set up equivalent fractions, like this-

=

Solve for x by using cross multiplication.
40*2.2= 88
1*x=88
x=88
Therefore, the boy weighs 88lbs.
A potential problem is that you are willing to accept a <u>5% </u>chance of being wrong if you reject the null hypothesis.
The significance level is the probability of rejecting the null hypothesis if it is true. For example, a significance level of 0.05 indicates a 5% risk of concluding that there is a difference when there is actually no difference. Rejecting the true null hypothesis results in a Type I error.
The smaller the value of α the more difficult it is to reject the null hypothesis. Therefore, choosing a low value for α can reduce the likelihood of Type I errors. The result here is that if the null hypothesis is false, it may be more difficult to reject using a lower value for α. The alpha value or statistical significance threshold is arbitrary. Which value to use depends on your field of study.
Learn more about The potential problems here:-brainly.com/question/21836542
#SPJ4
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
I think true. I'm pretty sure, but check w/ others too.