1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
3 years ago
5

The expressions for e/m and the relative error of e/m due to all of the parameters measured:

Physics
1 answer:
bija089 [108]3 years ago
6 0

Answer:

Term 1 = (0.616 × 10⁻⁵)

Term 2 = (7.24 × 10⁻⁵)

Term 3 = (174 × 10⁻⁵)

Term 4 = (317 × 10⁻⁵)

(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.

Explanation:

(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²

mean measurements

Voltage, V = (403 ± 1) V,

σᵥ = 1 V, V = 403 V

Current, I = (2.35 ± 0.01) A

σᵢ = 0.01 A, I = 2.35 A

Coils radius, R = (14.4 ± 0.3) cm

σʀ = 0.3 cm, R = 14.4 cm

Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.

σᵣ = 0.2 cm, r = 7.1 cm

Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)

Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)

Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)

Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)

The relative value of the e/m ratio is a sum of all the calculated terms.

(σ ₑ/ₘ) / (e/m)

= (0.616 + 7.24 + 174 + 317) × 10⁻⁵

= (498.856 × 10⁻⁵)

= (499 × 10⁻⁵) to the appropriate significant figures.

Hope this Helps!!!

You might be interested in
The yoga term asanas are which of the following?
frutty [35]

Answer:

i guss its A

Explanation:

3 0
3 years ago
Help me pls, class starts soon
ratelena [41]

Answer:

Explanation:

1.)66.36

2.)11.4

3.)0.8104

4.)4158.315

i got some of them and try the rest good luck

4 0
3 years ago
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
4 years ago
A ball is dropped from rest at a point 12 m above the ground into a smooth, frictionless chute. The ball exits the chute 2 m abo
Nonamiya [84]

Answer:

29,7 m

Explanation:

We need to devide the problem in two parts:

A)  Energy

B) MRUV

<u>Energy:</u>

Since no friction between pint (1) and (2), then the energy conservatets:

Energy = constant ----> Ek(cinética) + Ep(potencial) = constant

Ek1 + Ep1 = Ek2 + Ep2

Ek1 = 0  ; because V1 is zero (the ball is "dropped")

Ep1 = m*g*H1

Ep2= m*g*H2

Then:

Ek2  = m*g*(H1-H2)

By definition of cinetic energy:

m*(V2)²/2 = m*g*(H1-H2) --->  V2 = \sqrt{(2*g*(H1-H2)}

Replaced values:  V2 = 14,0 m/s

<u>MRUV:</u>

The decomposition of the velocity (V2), gives a for the horizontal component:

V2x = V2*cos(α)

Then the traveled distance is:

X = V2*cos(α)*t.... but what time?

The time what takes the ball hit the ground.

Since: Y3 - Y2 = V2*t + (1/2)*(-g)*t²

In the vertical  axis:

Y3 = 0 ; Y2 = H2 = 2 m

Reeplacing:

-2 = 14*t + (1/2)*(-9,81)*t²

solving the ecuation, the only positive solution is:

t = 2,99 sec ≈ 3 sec

Then, for the distance:

X = V2*cos(α)*t = (14 m/s)*(cos45°)*(3sec) ≈ 29,7 m

6 0
3 years ago
Read 2 more answers
Two forces that act on very small distances (smaller than you can see ) are
BlackZzzverrR [31]
There are three fundamental forces that act at a distance. They are gravitational, electromagnetic and nuclear forces.
7 0
3 years ago
Other questions:
  • What are the products in the photosynthesis equation?
    14·2 answers
  • A car accelerates at 3 m/s*2. Assuming the car starts from rest, how much time does it need to
    10·2 answers
  • How much work is required to compress a gas from a volume of 5.0 l to a volume of 2.5 l by exerting a constant external pressure
    9·1 answer
  • Two sources of light of wavelength 686 nm are separated by a horizontal distance x. They are 3 m from a vertical slit of width 0
    8·1 answer
  • A sled slides down a hill, reaches the level surface, and eventually comes to a stop. Which fact ultimately explains why the sle
    13·1 answer
  • How does the law of conservation of energy apply to machines?
    8·2 answers
  • Limestone is an example of a chemical sedimentary rock. describe how limestone may form
    9·1 answer
  • What does an electromagnet have that a bar magnet does not ?
    9·1 answer
  • Help me with this please​
    6·1 answer
  • In a Laundromat, during the spin-dry cycle of a washer, the rotating tub goes from rest to its maximum angular speed of 8.70 rev
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!