Answer:
2h+02=h20
Explanation:
2 in front of h on left side
2 in front of h on right side
Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
In this case a double displacement reaction will take place.
C3H8+ 5 O2 --> 3 CO2 + 4 H2O
44 g. --------> 72 g
33.3 g. --------> x

Answer: The theoretical yield of H2O is 54.5
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>