Answer:
The Forces of Flight
At any given time, there are four forces acting upon an aircraft.
These forces are lift, weight (or gravity), drag and thrust. Lift is
the key aerodynamic force that keeps objects in the air. It is the
force that opposes weight; thus, lift helps to keep an aircraft in
the air. Weight is the force that works vertically by pulling all
objects, including aircraft, toward the center of the Earth. In order
to fly an aircraft, something (lift) needs to press it in the opposite
direction of gravity. The weight of an object controls how strong
the pressure (lift) will need to be. Lift is that pressure. Drag is a
mechanical force generated by the interaction and contract of a
solid body, such as an airplane, with a fluid (liquid or gas). Finally,
the thrust is the force that is generated by the engines of an
aircraft in order for the aircraft to move forward.
Explanation:
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
I think it is option (C).
If the answer is helpful then mark me as brainly.