Answer:
Explanation:
As we know that the ball is projected upwards so that it will reach to maximum height of 16 m
so we have

here we know that

also we have

so we have


Now we need to find the height where its speed becomes half of initial value
so we have

now we have





Answer:
The answer is A. C and O..
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
Answer: Carbon 14 and Uranium 238 are not used together to determine fossil ages.
Explanation:
Carbon 14 with a half life of 5,700 years can only be used to date fossils of approximately 50,000 years. Most fossils are thought to be much older than 50,000 years. Also most fossils no longer contain any Carbon. The fossilized remains have been mineralized where the original organic material has been replaced and turned into stones containing no carbon.
Uranium 238 has a half life of 4.5 billion years. Uranium can be used to date the age of the earth. If 50% of pure uranium' is left in a sample the sample is assumed to be 4.5 billion years old.( This is assuming that the original sample was 100% uranium and no Uranium 238 has been eroded or lost in 4.5 billion years old. If a fossil has only 25 % of the Uranium 238 the sample has an estimated age of 3.2 Billion years. This would be the estimated age of the earliest life or formation of fossils.
Note no fossils contain Uranium 238. Uranium 238 is only found in igneous or volcanic rocks. So no fossils can be dated directly using U 238.
Because of the huge differences in the half lives of Carbon 14 and Uranium238 they cannot be used together. Carbon 14 can only be used to date fossils of a very recent age. Uranium 238 can only be used to date volcanic rocks of a very old age.
Answer:
Option-C (Lipoprotein profile)