Answer:
The answer to your question is: V2 = 1 l
Explanation:
Data
P1 = 200 kPa
P2 = 300 kPa
V1 = 1.5 l
V2 = ?
Formula
P1V1 = P2V2
V2 = (P1V1) / P2
V2 = (200 x 1.5) / 300
V2 = 1 l
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.
You could answer this right away IF you knew the length of each wave, right ?
Well, Wavelength = (speed) / (frequency).
Speed = 3 x 10⁸ m/s (the speed of light)
and
Frequency = 90.9 x 10⁶ Hertz.
So the length of each wave is 3 x 10⁸ / 90.9 x 10⁶ meters.
To answer the question, see how many pieces you have to cut
that 1.5 km into, in order for each piece to be 1 wavelength.
It'll be
(1,500 meters) divided by (3 x 10⁸ meters/sec) / (90.9 x 10⁶ Hz)
To divide by a fraction, flip the fraction and then multiply:
(1500 meters) times (90.9 x 10⁶ Hz)/(3 x 10⁸ meters/sec)
= 454.5
Answer:
jsjdgsudgwid s
Explanation:
83638hr is 3738 so 8273 and 837y37 and 82638 say hi to 1937
Snell's law<span> (also known as </span>Snell<span>–Descartes </span>law<span> and the </span>law<span> of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>