Answer:
The final angular velocity is rev/s is 0.293 rev/s.
Explanation:
Given;
mass of the merry-go-round, m₁ = 120 kg
radius of the merry-go-round, r = 1.8 m
initial angular velocity, ω = 0.4 rev/s
mass of the child, m₂ = 22 kg
Apply the principle of conservation angular momentum to determine the final angular velocity;

Therefore, the final angular velocity is rev/s is 0.293 rev/s.
The ball thrown horizontally
The weight of the ball dropped down is a factor in magnitude with gravity playing an important role as well.
On the other hand, the ball thrown horizontally has speed which allows magnitude and gravity playing against it, eventually the ball will hit the ground harder than the one dropped straight down
Answer:
Explanation:
Given that,
Hot temperature
T_H = 96°F
From Fahrenheit to kelvin
°K = (°F - 32) × 5/9 + 273
°K = (96 - 32) × 5/9 + 273
K = 64 × 5/9 + 273 = 35.56 + 273
K = 308.56 K
T_H = 308.56 K
Low temperature
T_L = 70°F
Same procedure to Levine
T_L = (70-32) × 5/9 + 273
T_L = 294.11 K
A carnot refrigerator working between a hot reservoir and at temperature T_H and a cold reservoir and at temperature T_L has a coefficient of performance K given by
K = T_L / (T_H - T_L)
K = 294.11 / (308.56 - 294.11)
K = 294.11 / 14.45
K = 20.36
Then, the coefficient of performance is the energy Q_L drawn from the cold reservoir as heat divided by work done,
So, for each joules W = 1J
K = Q_L / W
Then,
Q_L = K•W
Q_L = 20.36 × 1
Q_L = 20.36 J
Q_L ≈ 20J
So, approximately 20J of heats are removed from the room
Using newton's law of gravity on a 1kg mass near the star. G is newton's grav constant. g is acceleration of grav at starGMstar/r^2 = gstar
Option 3 Opposite charges Because the magnets attract.