Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230
<span> energy produced by flow of electric charge describes a electrical energy
because movement of electric charge do effect the work on system
so correct option is B
hope it helps</span>
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
Answer:
36.87 km/h
Explanation:
Convert all the units in SI system
1 mile = 1609.34 m
d1 = 6 mi = 9656.04 m
t1 = 15 min = 15 x 60 = 900 s
d2 = 3 mi = 4828.02 m
t2 = 10 min = 10 x 60 = 600 s
d3 = 1 mi = 1609.34 m
t3 = 2 min = 2 x 60 = 120 s
d4 = 0.5 mi = 804.67 m
t4 = 0.5 min = 0.5 x 60 = 30 s
Total distance, d = d1 + d2 + d3 + d4
d = 9656.04 + 4828.02 + 1609.34 + 804.67 = 16898.07 m = 16.898 km
total time, t = t1 + t2 + t3 + t4
t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h
The ratio of the total distance covered to the total time taken is called average speed.
Average speed = 16.898 / 0.4583 = 36.87 km/h