Q: A
according to this formula, we can get the mole fraction of water (n):
P(solu) = n Pv(water)
when we have Pv(solu) = 22.8 and Pv(water) = 23.8 so by substitution:
22.8 = n * 23.8
n= 0.958
- we need to get the moles of glucose:
moles of water = 500 g(mass weight) / 18 (molar weight)= 27.7 mol
n = moles of water / ( moles of water + moles of glucose)
0.958 = 27.7 / ( 27.7+ moles of glucose)
0.958 moles of glucose + 26.5 = 27.7
0.968 moles of glucose = 1.2
moles of glucose = 1.253 mol
∴ the mass of glucose = no.of glucose moles x molar mass
= 1.253 x 180 = 225.5 g
Q: B
here we also need to get n (mole fraction of water )by using this formula:
Pv(solu) = n Pv(water)
when we have Pv(solu)=132 & Pv(water)=150 so, by substition:
132= n * 150
n = 0.88
so, mole fraction of solution = 1 - 0.88 = 0.12
and we can get after that the moles of water = (mass weight / molar mass)
- no.moles of water = 85 g / 18 g/mol = 4.7 moles
- total moles in solution = moles of water / moles fraction of water
= 4.7 / 0.88 = 5.34 moles
∴ moles of the solution = total moles in solu - moles of water
= 5.34 - 4.7 = 0.64 moles solute
∴ the molar mass of the solute = mass weight of solute / no.of moles of solute
= 53.8 / 0.64 = 84 g/mole
Q: C
moles of urea (NH2)2 CO = mass weight / molar mass
= 4.49 g / 60 g /mol
= 0.07 mol
moles of methanol = mass weight / molar mass
= 39.9 g / 32 g/mol = 1.25 mol
moles fraction of methanol = moles of methanol / (moles of methanol + moles of urea )
moles fraction of methanol = 1.25 / ( 1.25+0.07) = 0.95
by substitution in Pv formula we will be able to get the vapour pressure of the solu :
Pv(solu) = n P°v
Pv(solu) = 0.95 * 89 mm Hg
∴Pv(solu) = 84.55 mmHg
Answer:
calcium ca
Explanation:
We can see here that the only element that is on the same group (column) as Ba (Barium) is Calcium (Ca).
Hello!
To find the number of moles that are in the given amount, we need to divide the total number of atoms by Avogadro's number, which is 1 mole is equal to 6.02 x 10^23 atoms.
5.0 x 10^25 / 6.02 x 10^23 ≈ 83.0564
Therefore, there are about 83.06 moles of iron (sigfig: 83 moles).
The third reason helped Rutherford to discover the nucleus.